RE-INVENTING THE IIT TOWER Project Baharani Masters 2011 Aarzoo

Project: Re-inventing the IIT Tower

Project Statement: The building systems, envelope performance and building use efficiency of the IIT Tower will be analyzed for evaluation of the current building energy use and occupant comfort levels. Energy modeling tools will be used to demonstrate the achievement of superior building performance and better occupant comfort levels through proposed design interventions. The transformative design will also result in a holistic improvement in building performance.

Goals of Project

Selection:

- Energy modeling tools and mechanical system calculations to be utilized for evaluating • current building performance metrics in terms of the building envelope and systems.
- Investigation of the probable design interventions and evaluation of the results using \bullet energy modeling.
 - Proposal for design interventions that prove better building performance. •
- Value of The study should demonstrate the importance of energy modeling in a new or renovation **Research:** project, by an objective evaluation of building energy performance metrics for improvement in occupant comfort levels.
- **Criteria for** The design interventions should result in superior building system performance resulting in a lower energy use intensity of the building and higher occupant satisfaction. The proposal Project should demonstrate better building performance metrics. It is anticipated that the Success: transformative design will increase building efficiency and the usable area.

Existing building energy model Project

Deliverables:

Upgraded building energy model

Proposed intervention studies [façade, material, vertical transportation, envelope components]

Proposed design intervention drawings

Proposed building renderings

Brochure

Graphs showing the energy performance metrics comparison

WHY?

- It is a 50 year old building with low energy performance due to thermal bridging and oversized mechanical systems.
- It has numerous possibilities for improvement in value that it provides to the school and the neighborhood.
- With the availability of analysis software and new systems there can be tremendous improvement in building performance.

HOW?

- Analysis of existing conditions-energy modeling, façade studies
- Testing design proposals using simulation and modeling tools
- Selection of optimum choices for the new façade, mechanical system

BASIS OF STUDY

WHY THE PROJECT IS IMPORTANT...

- The Building Sector is responsible for:
 50.1% of total annual U.S. energy consumption
 49.1% of total annual U.S. GHG emissions
 74.5% of total annual U.S. electricity consumption
 (Source-Architecture2030)
- As of 2003, existing buildings in the U.S. 4.9 million, new buildings 57,000
- 39,408 LEED certified buildings (not including LEED for Homes)
- For each \$1 sf/yr (per square foot, per year) of energy saved, a commercial building will increase in value about \$11.75 per square foot at a capitalization rate of 8.5%. For example, if a building owner of a 10,000 square foot building saved \$10,000 on annual energy expenses, the building would increase in value \$117,500.

(Source-Architecture2030)

	Minimum Energy
3-Year	Reduction Target
Maximum annual tax deduction per square foot of floor area	Percentage better than ASHRAE 90.1-2004
\$4.50	30%
\$6.00	50%
\$7.50	75%
\$9.00	Zero-Net-Energy

COMMERCIAL REAL ESTATE SOLUTION -ARCHITECTURE 2030

IIT TOWER

IIT CAMPUS 31ST. STREET CTA GREEN LINE S. STATE STREET METRA **CTA RED LINE** 33RD. STREET 190,94 **CROWN HALL TECH PARK IIT TOWER** 35TH. STREET **CELLULAR FIELD** TRANSIT STOP

Built: 1963-1964 Designed by: Schmidt, Garden, and Erikson Type: Skyscraper Maximum Height: 237 feet / 72 meters Location: IIT Campus, Chicago, Un<u>ited States</u>

IIT TOWER

at the crossroads of activity and transformation

UNIVERSITY TECHNOLOGY PARK

CAMPUS SUSTAINABILITY AT IIT

Program Area	2020 Goal	Primary Metric	Baseline	Target	Secondary Metric	Baseline	Target
Transportation	Increased alternative transportation (non-single-occupancy vehicle travel)	Commuter miles	5% 33%		Embodied Energy	TBD	TBD
	Use electric vehicles on campus	Number of electric vehicles	15%	100%	Embedded Water	TBD	TBD
	Mitigate impact of non-commuter travel (all forms)	Non-commuter miles mitigated	096	100%	Engaged Community		100%
Supply Chain/Waste Management	Reduce flow of materials Weekly, per capita waste ment		3.5 lbs.	0.9 lbs	Embodied Energy	TBD	TBD
					Embedded Water	TBD	TBD
		Paper purchasing	TBD	25% reduction	Engaged Community	5%	100%
Green Building	All new buildings/spaces LEED Gold	LEED-Gold new buildings	0%	100%	Embodied Energy	TBD	TBD
	Existing floor space LEED Gold IBOM	LEED-Gold floor space	0%	75%	Embedded Water	TBD	TBD
	All spaces comply with ASHRAE & KS	Compliant floor space	UNK	100%	Engaged Community	5%	100%
Stornwater/ Landscape	itormwater/ Net all stormwater managed on site Stormwater		est. 15% 100%		Embodied Energy	TBD	TBD
		Off-site stormwater infiltration			Embedded Water	TBD	TBD
					Engaged Community	5%	100%
Emissions	Eliminate all harmful emissions	Catalogue harmful emissions	TBD	None	Embodied Energy	TBD	TBD
	Reduce carbon emissions	CO2E (2008 baseline)	34 kton	17 kton	Embedded Water	TBD	TBD
					Engaged Community	5%	100%
Energy	Eliminate wasted energy	Energy not serving core mission	220MMBtu	20MMBtu	Embodied Energy	TBD	TBD
	Eliminate lost heat from energy transfer	Waste heat related to energy use	616MMBtu	236MMBtu	Embedded Water	TBD	TBD
					Engaged Community	5%	100%
Food	Increase organic food offering	Percentage of food organic	496	100% comply Embodied Energy with 1 of these 3		TBD	TBD
	Increase fair trade food offering	Percentage of food fair trade	196		Embedded Water	TBD	TBD
	Increase local food offering	Percentage of food grown locally	7%		Engaged Community	5%	100%

By 2020, IIT will reduce primary energy waste by ninety percent (90%) compared with fiscal year 2010 Reduce secondary energy waste (waste heat) by thirty percent (30%) compared with fiscal year 2010. Energy density of about 113 kBtu/square foot/year The average building in the Midwest (according to CBECS by the DOE) is about 94 kBtu/sf/year, an efficient building is around 60 kBtu/sf/year, and the ideal building around 40 kBtu/sf/year.

THE PROJECT

THE PROJECT

GOALS

IMPROVE VALUE AND AMENITY

EXISTING CONDITIONS

THE LOBBY

OPTION 1 RETAIL SQUARE FOOTAGE 18,500 S.F. AT \$19-\$21 PER S.F. PER YEAR

OPTION 2 RETAIL SQUARE FOOTAGE 16,900 S.F. AT \$19-\$21 PER S.F. PER YEAR

OPTION 3 RETAIL SQUARE FOOTAGE 16,100 S.F. AT \$19-\$21 PER S.F. PER YEAR

SITE PLAN

S. STATE STREET

EXISTING MECHANICAL SYSTEM

OPTIMIZED MECHANICAL SYSTEM

- ٠

Using water for thermal energy-active chilled beam						
system						
Duct size 1/13 th the original						
$\frac{1}{2}$					╞═┥	-
proposed-1 ½ ACH nygienic						
an						
				┝╧╏──┤	╞═╢═╴┤	•
	+			┝╼╏┨──┤	┼──╢═─┼	-
						-
			-			
			╞╼╢┋╴┤			
	╞═╬═┽		┝━╏┋┥			
	┼═╬┥═┽		╞╼┥			
		_				
CH1 CH2 COOLING TOWER						
			W			

VERTICAL TRANSPORTATION SYSTEM EXISTING CONDITIONS

- Equipment-
- Cars-4
- Floors-20+basement
- Stops-20

VERTICAL TRANSPORTATION SYSTEM EXISTING CONDITIONS

EXISTING CONDITIONS

- 18 leasable floors with a total of 252,000 sq. ft. of leasable space 5 elevators required
- With the addition of 2 floors, new leasable area 317,520 sq. ft. 7 elevators required

EXISTING ISSUES

- Breakdown and wait time complaints
- Freight elevator taking up leasable area on floors

REQUIREMENTS

- 1 elevator/ 50,000 sq. ft. of leasable space
- Every elevator run not more than 15 floors

VERTICAL TRANSPORTATION SYSTEM PROPOSED GROUND FLOOR LEVEL

VERTICAL TRANSPORTATION SYSTEM PROPOSED 11-21 FLOOR LEVEL

INCREASE IN BUILDING EFFICIENCY BY 2% PER FLOOR (11-21)

VERTICAL TRANSPORTATION SYSTEM

VALUE ADDITION

Recapturing the 20th floor and addition of a floor at the 21st level: 14,000 x 2 S.F.

Recapturing the perimeter induction unit and duct area from 2-19 floors: 500 x 18 S.F.

Recapturing the lobby and addition of new retail : 21,000 S.F.

Recapturing the air shaft area on 20 floors and basement: 320 x 21 S.F.

Recapturing the freight elevator area on 20 floors and basement: 140 x 21 S.F. INCREASE IN LEASABLE SPACE BY 26% AT \$19.00-21.00 PER S.F.

VALUE ADDITION

METHODOLOGY FOR BUILDING SKIN DESIGN

BUILDING SKIN

- Window-wall ratio: 63% (N&S) 68% (E&W)
- ¹/₄" single pane glass without thermal breaks

*

*

*

EXISTING BUILDING SKIN

Option 1 New Glass with Old Frame

Option 2 New Glass +New Frame

Option 3 New Window and Formawall

GLASS SELECTION ANALYSIS

■ ENERGY CONSUMPTION IN KWH X 000

CLIMATE

FAÇADE ANALYSIS

FAÇADE REQUIREMENTS

	NORTH	SOUTH	EAST/WEST
SUMMER	Control lighting (glare)	Control lighting (glare) Control heat gain	Control lighting (glare) Control heat gain
WINTER	Prevent heat losses (day & night) Allow adequate light levels	Control lighting (glare) Prevent heat losses (night) Capture solar heat	Prevent heat losses (night)
SWING SEASON		Control lighting (glare)	Control lighting (glare)
POSSIBLE SOLUTIONS	 Interior shading devices Improve U-Value of glass: Add coatings (inside layers) Add panes 	 Exterior shading devices (reflective) Improve U-Value of glass: Add coatings Add panes 	 Exterior shading devices Improve U-Value of glass: Add coatings Add panes

FAÇADE FUNCTIONS

- Protection from solar energy
- Waterproofing
- Ventilation
- Interior loads
- Thermal insulation
- Acoustic
- Wind loads
- Views
- Building appearance

HEAT TRANSFER AT THE FACADE

SUMMER Strategies

- Direct solar transmittance and absorbed and re-radiated inward need to be minimized
- Reflected and absorbed and re-radiated out need to be maximized
- Indoor daylight levels need to be balanced
- Possibility for natural ventilation with shading

- Night flush cooling to release heat built up during daytime
- Radiation to lose heat built up needs to be maximized

WINTER Strategies

Solar Energy (infrared + visible + ultraviolet) Heat loss through ◀• the facade Solar Heat Gain <-◀• ◀• **Direct Solar** Transmittance ◀• Absorbed and re-radiated inward

- Direct solar transmittance and absorbed and re-radiated inward needs to be maximized
- Reflected and absorbed and re-radiated out needs to be minimized
- Indoor daylight levels need to be balanced

 Heat losses through building skin need to be minimized

SWING SEASON Strategies

- Natural Ventilation strategies
- Adequate adaptability for increased/decreased shading/solar transmittance

- Natural Ventilation strategies
- Maximize adaptability of the facade

NORTH FAÇADE Option 1

NORTH FAÇADE Option 2

NORTH FAÇADE Evaluation

Monthly Energy Use (per Total Floor Area)

ht

SOUTH FAÇADE Option 1

SOUTH FAÇADE Option 2

SOUTH FAÇADE Evaluation

Monthly Energy Use (per Total Floor Area)

Lt

EAST/WEST FAÇADE Option 1

EAST/WEST FAÇADE Option 2

EAST/WEST FAÇADE OPTION 3

WEST FAÇADE Evaluation

ENERGY FLOWPATHS and DOUBLE SKIN

DOUBLE FAÇADE OPTION 1 Summer Day

DOUBLE FAÇADE AS A MECHANISM TO REDUCE SOLAR HEAT GAIN

DOUBLE FAÇADE OPTION 1 Summer Night

Trapped heat is vented out at the roof level to allow for night cooling

DOUBLE FAÇADE AS A NIGHT COOLING MECHANISM

DOUBLE FAÇADE OPTION 1 Winter Day

DOUBLE FAÇADE AS A MECHANISM TO INCREASE SOLAR HEAT GAIN

DOUBLE FAÇADE OPTION 1 Winter Night

trap the hot air to act as a thermal buffer

DOUBLE FAÇADE AS A THERMAL BUFFER

DOUBLE FAÇADE OPTION 2 Summer Day

REDUCE SOLAR HEAT GAIN

DOUBLE FAÇADE OPTION 2 Summer Night

DOUBLE FAÇADE AS A NIGHT COOLING MECHANISM

DOUBLE FAÇADE OPTION 2 Winter Day

DOUBLE FAÇADE OPTION 2 Winter Night

DOUBLE FAÇADE OPTION 2 Swing Season Day/Night

Adaptability of the façade to allow for natural ventilation

OPTIONS 1 & 2 - CONCLUSIONS

- Due to smaller diurnal range in temperature in the Summer, night cooling does not work very well
- The building having 15+ floors, the multistorey double wall does not work very well
- More adaptability for natural ventilation/hybrid mode

DOUBLE FAÇADE OPTION 3 Summer Day

DOUBLE FAÇADE OPTION 3 Summer Night

70

DOUBLE FAÇADE OPTION 3 Winter Day

DOUBLE FAÇADE OPTION 3 Winter Night

DOUBLE FAÇADE AS A THERMAL BUFFER

DOUBLE FAÇADE OPTION 3 Swing Season Day

Adaptability of the façade to allow for natural ventilation

DOUBLE FAÇADE OPTION 3 Swing Season Night

Adaptability of the façade to allow for natural ventilation

BUILDING SKIN AND ENVIRONMENTAL CONTROLS

Summer Day (Operational days of the year in cooling mode-50 days)

DOUBLE FAÇADE AS A MECHANISM TO REDUCE SOLAR HEAT GAIN

BUILDING SKIN AND ENVIRONMENTAL CONTROLS Summer Night

THROUGH THE OPERABLE OUTER WINDOW

BUILDING SKIN AND ENVIRONMENTAL CONTROLS

Winter Day (Operational days of the year in heating mode-202 days)

DOUBLE FAÇADE AS A MECHANISM TO TRAP SOLAR HEAT

BUILDING SKIN AND ENVIRONMENTAL CONTROLS Winter Night

DOUBLE FAÇADE AS A THERMAL BUFFER

BUILDING SKIN AND ENVIRONMENTAL CONTROLS

Swing Season Day (Operational days of the year in hybrid/natural vent mode-114 days)

ADAPTABILITY OF THE FAÇADE TO ALLOW FOR NATURAL VENTILATION MODE

BUILDING SKIN AND ENVIRONMENTAL CONTROLS Swing Season Night

ADAPTABILITY OF THE FAÇADE TO ALLOW FOR NATURAL VENTILATION MODE

ANALYSIS OF HEAT ABSORBING GLASS ON DIFFERENT FACADES

ENERGY CONSUMPTION PER FLOOR IN KWH X 000

EXISTING SKIN

CONSTRUCTIBILITY

NEW OUTER SKIN-PREFABRICATED CENTRIA WINDOW-WALL PANEL SYSTEM

REMOVE EXISTING WINDOWS

CONSTRUCTIBILITY

ADD MOTORIZED SHADES

ADD INTERNAL SLIDING WINDOWS

SCALABILITY

WINTER GARDEN

0

VALUE

- HIGHER MECHANICAL SYSTEM EFFICIENCY
- 26% / 67,000 S.F. MORE LEASABLE SPACE
- HIGHER ELEVATOR EFFICIENCY
- \$1.4 MILLION PER YEAR MORE IN RENT
- THE NEW FACE OF IIT AND THE NEIGHBORHOOD
- INTEGRATION WITH THE CAMPUS
- 32% / 8.7 BILLION BTU REDUCTION IN ENERGY CONSUMPTION
- INCREASE IN VALUE TO IIT AS A SUSTAINABLE CAMPUS
- \$91,705 SAVINGS IN ENERGY COSTS PER YEAR
- HIGHER OCCUPANT COMFORT LEVELS
- CAMPUS RETROFIT PROTOTYPE SCALABILITY
- NEW CAMPUS POCKET PARK AND COLLECTIVE INDOOR SPACE WINTER GARDEN

CONCLUSIONS

- A comprehensive approach to achieving better value and amenity in existing conditions
- An iterative performance based approach to building skin design helped understand the methodology for achieving reduced energy consumption in buildings with high window to wall ratios
- The different façades should be able to adapt to the different conditions throughout the year
- A step-by-step approach can improve building performance by almost 30% over time and increase in leasable area by 26%
- Result-an iconic building for the landmark Mies campus and the historic Bronzeville district, providing improved amenity to its occupants
- The study demonstrates the importance of energy modeling by an objective evaluation of building energy performance metrics for improvement in occupant comfort levels

