IPRO 344

Improving Energy Efficiency and Offering Quality Audio in Mobile Devices and Intercom Systems

Objectives

- Overall Goals
 - Create an industry standard for testing and implementing drive thru systems

Immediate Goals

- Obtain quantitative data on the quality of sound capture for two-way communication systems
- Create a refined prototype Drive-Thru kiosk
- Analyze common sources of noise in the Drive-Thru environment

Background

- Businesses seek new and innovative ways to remain competitive
- Over 50% of inaccuracy in drive-thru occurs during order capture
- Results from poor acoustic performance

Past Semesters' Progress

- Identified Class-D Amplifiers as energy efficient and high quality in audio application
- Designed preamplifiers for headset and kiosk microphones
- Developed a full two-way communication system

Team Structure

Project Approach

- Phase I: Research & Construction
 - Design and construct the kiosk
 - Design and Implement a two-way communication system
- Phase II: Testing
 - Determine the intelligibility of the system under several conditions
- Phase III: Refinement
 - Use Phase II results for improvement of the system

Achievements

System Diagram

New Components

- 4 Channel Mixer
- Equalizer
- Client Priority Gate

Improvements on Inherited Components

- Condensed Chassis
- Moved Components to Server Station
- Printed Circuit Boards for All Circuits

New Kiosk

- Offers easier access to components
- Modular design allows for additional components and dynamic testing

New Kiosk

1 Front Panel

2 Back Panels

Testing Process

Speech Transmission Index (STI)

- International standard for measurement of speech intelligibility
- Frequency-weighted sum of signal transmission
- Envelope modulation of signals to simulate speech nuances
- Free software available to directly measure STI

Software

- LexSTI
 - Measures the STI of audio signals
- TruRTA
 - Take SPL measurements for reference
- Audacity
 - Calibrate recording levels for testing
- MATLAB
 - Created software to fix corrupted output files recorded by LexSTI

Testing Diagram

Testing Variables

Noise

- Microphone types
 - Cardioid (unidirectional)
 - Omnidirectional
- Distance from kiosk
- Kiosk insulation
- External noise sources

Testing Results

New Kiosk

Old Kiosk

Conclusions

- Cardioid Microphones have a higher STI than Omnidirectional Microphones
- Foam insulation raises the STI
- Increased microphone depth raises the STI

Future Work

- More Testing
 - A testing procedure has been developed
 - The system and kiosk are built dynamically to allow for modular testing
- Filters
 - Remove common noise sources

Economics

- Total cost for this semester: \$1190.73

• A large portion of the cost is reduced when produced on a larger scale

 Cost looks promising, however more market research is required for a solid cost analysis

Ethical Considerations

- Current global energy production and usage is considered
 - Class D amplifiers are near perfectly efficient
- ROHS compliance where available

 The ROHS Directive stands for "the restriction of the use of certain hazardous substances in electrical and electronic equipment
 Law in the EU, ethical option for our IPRO

Obstacles

- No access to a consistent, quiet testing space
 - Solved by focusing on STI differences for variable differences
- Mangled output from LexSTI
 - Solved by creating a MATLAB program to fix the output files prior to STI analysis
- No data on existing kiosks
 - Solved by investigating ways to systematically improve the STI of our system

Acknowledgments

- Dr. Ralph Muehleisen
- Shure, Inc.

