

Conclusion:

Mechanical:

- Tests run on the prototype show that automation of the welding process is a practical expectation.
- The company will hopefully be able to construct a real feed mechanism device from our prototype.
- A worker will no longer be required.

Database:

- The company will be able to eventually estimate how long tools will last and when they will need to be replaced.
- Using the OCR technology, the company will also be able to quickly feed large amounts of "back-data" into their tool management software.

Disk allignment in action (left),

Vibratory Bowl (right)

Results:

Mechanical:

- Designed a prototype that will automate the feeding of disks into a welding machine
- Able to orient all of the disks into a one-track system using a vibratory bowl provided by the company.
 - The track has a section that is interchangeable, depending on the disk size.
- A flipper mechanism is then used to divert the newly sorted discs into the welding assembly.

Flipper (left), Track (right)

Database:

- The current shop management system that Smith & Richardson possesses will be used to keep track of tool locations.
 - o They will use an OCR program to input data from their paper tool sheets.
- Our group developed a supplemental Microsoft Access application that can calculate and predict tool-wear life.
 - Tool-wear life is calculated using an estimation process:
 Quantity * Material Coefficient
 * Number of Cuts = Approx. Use of Tool
 - o Needs to store a sufficient amount of data for each tool before it will be able to provide accurate estimations of tool life.

IPRO 347

and

ILLINOIS INSTUTUTE OF TECHNOLOGY

for the benefit of SMITH & RICHARDSON, INC.

