IPRO 345: Chicago Sister Cities China: Fuel Cell/Geothermal Sustainable Energy USX Site

Project Plan

Spring 2008

Advisor: Said Al-Hallaj

1.0 Objectives

- **A.** Create a working software tool that assists in the capacity of planning, decision making and accessing the economic feasibility of implementing an integrated fuel cell technology and geothermal energy system.
- **B.** Through a case study approach, research and evaluate the energy needed in residential homes to use as a basis for determining the algorithms employed in the software development.
- **C.** Demonstration of the viability of the integrated fuel cell and geothermal system in a specific location through the prototype testing of the database tool.
- **D.** Connect an alternative energy source for heating and cooling to the industrial world by providing an efficient way to analyze the design and economic parameters required to implement such an integrated energy system.
- **E.** Research on all parameters needed for our project's implementation including environmental laws and regulations, permits, funding, weather, population, and energy consumption.

2.0 Background

- **A.** The Chicago Sister Cities China Architecture and Engineering subcommittees, as well as HNTB companies, established and secured sponsorship for the formations of our team.
- **B.** This internationally jointed team of faculty, students and university administrators are from University of Illinois at Chicago (UIC), Illinois Institute of Technology (IIT), and Tong-ji University (TU) in Shanghai.
- **C.** Two different technologies are involved in developing the process. Fuel cell technology is used to generate electrical power as well as to supplement heating power. A molten carbonate fuel cell was selected to be used due to its high operating heat, its ability to utilize a variety of hydrocarbon fuels, and its high efficiency. A geothermal heat pump is being used as the primary source of heating and cooling power. A geothermal heating system is environmentally friendly and can cheaply supply heating and cooling power throughout the year. When necessary the waste heat from the molten carbonate fuel cell can be used to augment the heating abilities of the heat pump system.
- **D.** Fuel Cell technology has been around well over 100 years, in the early 1900's there were many attempts to develop fuel cells that will convert carbon into electricity, but the advent of the internal combustion engine put the fuel cell technology on stand by. In 2000, the US Army Corps of Engineers published a study examining the use of a molten carbonate fuel cell for supplying power to the

Rock Island Arsenal, IL. In addition to supplying power to the facility, the study also examined using the waste heat of the fuel cell along with additional heat provided by a geothermal heat pump system to offset heating costs. The study found that by using these two systems in conjunction with each other the Rock Island Arsenal could significantly reduce energy costs, as well as significantly reducing environmental pollutants such as CO₂. This shows that a combined molten carbonate fuel cell/ geothermal heat pump system can be feasible in certain locations.

- **E.** There are three sets of parameters that are involved in the designing process. The first branch is the environment and law unit which will address the issues of permits needed as well as the environmental regulations. It will also investigate the weather conditions and the areas' needs. The second is economics unit which will investigate the grants and subsidies along with the price of excess energy created by the system. Another area of parameters that must be investigated is the design of the system, which includes the energy needed to supply heating and cooling, the amount of power generated, and the mechanics of the system.
- **F.** After the completion of the research phase. The information gathered will be organized and entered into a computer program. This program will then be able to analyze a selected site to determine if a combined fuel cell and heat pump system would be technically, economically and ethically feasible.
- **G.** By creating software that will assist in introducing an unfamiliar technology to society it is very important that the ethical, moral and cultural issues will be addressed. These issues will set a guide for future use of the new technology and will create boundaries that must be held. To begin with, the more pertinent issue of the project is concerning the regulations for digging, constructing, and fully implementing the system into a society. To prevent a society from rejecting this system, one must be aware of environmental issues and also be knowledgeable about the fuel cell and its positive effects on the environment. Other benefits in using this technology include promoting local jobs, efficient energy, health benefits/environmental, reduced energy costs and reduce dependency on depleting resources.

3.0 Methodology/Brainstorm/Work Breakdown Structure

- **A.** Design and implement software for assessing the feasibility of implementing of a hybrid energy system consisting of geothermal energy and fuel cell technology.
- **B.** In order to accomplish said task in section 3.0A the team will focus on the potential implementation of the project at the 640-acre U.S. Steel Duluth Works site (USX site). By using this site we can gain an understanding of all factors that need to be addressed. As a group we have decided to move through the research and development phases as a complementary and cohesive. Through this process we hope to all gain a better understanding of the fuel cell/geothermal system and also to have a more fruitful end result.
- **C.** We have a large team which provides us with an array of technical and professional skills sets. In the research segment of the group we have scheduled many presentations in which each member of the group shares information with the other team members. However, the design team is primarily responsible for finding and coordinating the data organization process with the contract programmer.
- D. The parameters and information needed for our project will be complied into an organized format that will come from the collaboration between our sub teams. We are all responsible for creating a comprehensive and understandable way to organize the algorithms that will complement our software.

- **E.** In the final stage, we will be presenting to The Chicago Sister Cities China Architecture and Engineering subcommittee as well as our parallel team from UIC.
- **F.** Final adjustments to the programming and software will be worked out with the contract programmer hired to assist with the prototype testing phase. An IPRO deliverable report will be generated by individual subgroups being responsible for their topics as well as by cohesively working with the other subgroups. The rough draft will be posted on the igroups website and will be read by all group members. We will have an open forum for any suggestions to make any necessary changes.
- G. Not applicable.

4.0 Expected Results

- **A.** The results of this IPRO will be used to judge whether or not the design tool produced is a working model.
- **B.** Expected data from research will be the parameters needed in a first-case analysis tool for implementation of molten carbonate fuel cells. The tool itself will be tested and the data from the testing will be an indication of the accuracy of the tool.
- **C.** The potential product that will evolve due to research and testing is a first-case analysis tool for determining whether molten carbonate fuel cells are a viable energy solution for any project site.
- **D.** Our potential outputs through the execution of assigned tasks are to gain appropriate data on Geothermal Energy and Fuel Cell Technology, and to share our known and learned information with other group members. We will also work together as a group to provide the best product while being team players.
- **E.** Our expected results in terms of prototypes and other deliverables are a working tool to carry out first-case analysis for implementation of molten carbonate fuel cells and a final report and presentation on our project.
- **F.** The results we expect will address the problem and concerns of the sponsors. They expect a tool for first-case analysis of implementation of molten carbonate fuel cells and we are planning to meet their expectations.

G. All data gathered from research will indicate which factors need to taken into consideration for making a first-case analysis on the viability of molten carbonate fuel cells on project sites. Those aspects of design will be put into the tool, and thus the data will be incorporated into the solution.

5.0 Project Budget

Item	Quantity	Price(\$)	Purpose
Printing		50	For printing our project abstract. For making copies throughout the semester.
Contract Programmer	10/hr 150 project hours	1500	To hire a programmer to organize our information into a database tool
Food and drinks		250	To buy pizza for 28 people during the midterm presentation and final presentation phases
Travel money to USX site		200	This would serve as an opportunity for the group to evaluate a potential case study site
Published articles site fee		400	This would enable us to access the needed ports of information for our project
Total Budget		2400	

6.0 Schedule of Tasks and Milestone Events

Task	Members Responsible	Hours total	Dates
Research Environmental impact/guidelines/regula tions of fuel cells	Maruja Yoshimura	17 hours	February 17 th -March 25 th
Research Environmental impact/guidelines/regula tions of geothermal pumps	Abhishek Prabha Kumar	17 hours	February 17 th -March 25 th

Task	Members Responsible	Hours total	Dates
Research codes and laws (federal, state, city) pertaining to fuel cells	Suk Hwan Yun	17 hours	February 17 th -March 25 th
Research codes and laws (federal, state, city) pertaining to geothermal pumps	Nick Leep	17 hours	February 17 th -March 25 th
Research site conditions necessary for a fuel cell/geothermal system	Daisy Agose	15 hours	February 17 th -March 25 th
Research environmental conditions in Chicago	Eliza Bober	12 hours	February 17 th -March 25 th
Put together work for Midterm presentation	Eliza Bober	5 hours	February 29 th - March 2 nd
Plan database format	Eliza Bober	3 hours	March 10 th – March 17 th
Organize research into database	Daisy Agose Eliza Bober Abhishek Prabha Kumar Nick Leep Maruja Yoshimura	36 hours	March 17 th - April 4th
Develop code of ethics	Nyah Zarate, Raisa Pelae, Christian Arnoux, Cheryl Mukai	20 hours	March 7 th
Attend ethics presentation	Raisa Pelae, Christian Arnoux, Cheryl Mukai	4 hours	February 15 &16
Edit and finalize project plan	Nyah Zarate, Daisy Agose, Brian Hogan	5 hours	February 10 th – 22 nd
Research costs (electricity, fuel, machinery, installation)	Jonathan Lockridge, Yoon Sung Chung, Matt Dado, Yun Jin Lee	55 hours	February 10 th – March 14 th
Research federal, state, and local subsidies	Richard Byrne, Funso Ajigbo, Gregory Enadeghe	55 hours	February 10 th – March 14 th
Research fuel cell implementation	Chris Wolcott, Jaehyuk Kim, Jae hyung Park, Won woo Park, Min Zheng, Jennifer Peavler	60 hours	January 31 st – March 4 th
Determine aspects of design included in tool	Brian Hogan, Jennifer Peavler, Chris Wolcott	10 hours	February 21^{st} – March 4^{th}

Task	Members Responsible	Hours total	Dates
Perform calculations on existing sites	Brian Hogan, Won woo Park, Jaehyuk Kim, Min Zheng	40 hours	February 28 th – March 20 th
Develop database for tool	Brian Hogan, Won woo Park, Alex Horner	15 hours	March 20 th – March 27 th
Build software tool	Hired CS programmer	100 hours	March 27 th – April 8 th
Test design tool on project sites	Brian Hogan, Jae hyung Park, Alex Horner	20 hours	April 8 th – April 24 th
Design Website	Nyah Zarate		

7.0 Individual Team Member Assignments

Name	Major	Position	Skill
Daisy Agose	Chemical Engineering 4 th year	Team Leader Site Requirements Research	MatLab, Hysys, Excel
Eliza Bober	Architecture 4 th year	Sub-Team leader Environment Research Sub-team clerical	Presentation Experience, IPRO Experience, Word, Excel, Photoshop, Illustrator and AutoCAD
Abnishek Prabha Kumar	Chemical Engineering 2 nd year	Environmental – geothermal research	Teamwork, Excel, Word, Photoshop, AutoCAD, MatLab
Nick Leep	Chemical Engineering 2 nd year	Geothermal codes and laws research	MatLab, Excel, Word, HTML
Maruja Yoshimura	Chemical Engineering 2 nd year	Environmental – fuel cell research	Very Organized, Word, Excel
Suk Hwan Yun	Chemical Engineering 2 nd year Environmental Engineering (in Korea)	Fuel Cell codes and laws	Looking into Environmental Effects and Alternative Energy Basic Computer Skills
Jonathan Lockridge	Architecture 4 th year	Sub-team Leader	Auto CAD, CS3, 3dmax, VIZ, Carpentry
Yoon Sung Chung	Material Science	Economics sub-team	Bilingual

Name	Major	Position	Skill
Mathew Dado	Chemical Engineering 2 nd year	Economics sub-team	Strong Technical and Analytical skills
Richard Byrne	Chemical Engineering 2 nd year	Economics sub-team	Strong technical and analytical skills
Funso Ajigbo	Chemical engineering	Economics sub-team	Bilingual, good organizer, MatLab, Hysys, Excel
Gregory Enadeghe	Chemical engineering	Economics sub-team	Strong Technical and Analytical skills
Yun Jin Lee	Mechanical engineering	Economics sub-team	Bilingual, MatLab, Hysys, Excel
Brian Hogan	Chemical Engineering 4 th year	Design sub-team leader	Strong technical and analytical skills
Chris Wolcott	Chemical Engineering 2 nd year	Design sub-team	Strong technical and analytical skills
Jennifer Peavler	Chemical Engineering 3 rd year	Design sub-team	MatLab, Hysys, Excel
Jaehyuk Kim	Architecture 4 th year	Design sub-team	Strong technical and analytical skills
Jae hyung Park	Aerospace Engineering 4 th year	Design sub-team	Strong technical and analytical skills
Won woo Park	Architecture 4 th year	Design sub-team	Strong technical and analytical skills
Min Zheng	Chemical Engineering 3 rd year	Design sub-team	Strong technical and analytical skills
Alex Hornero	Chemical Engineering 4 th year	Design sub-team	Bi-lingual, strong technical and analytical skills
Raisa Pelae	Chemical Engineering 4 th	Ethics sub-team, minute taker	MatLab, Hysys, Excel
Nyah Zarate	Chemical Engineering 4 th year	Ethics sub-team, IPRO deliverables	MatLab, Hysys, Excel
Christian Arnoux	Chemical Engineering 4 th year	Ethics sub-team	MatLab, Hysys, Excel
Cheryl Mukai	Chemical Engineering 4 th year	Ethics sub-team	Strong technical and analytical skills

8.0 Designation of Roles

- A. Meeting Roles
 - a. Minute Taker: Raisa Pelae
 - b. Agenda Maker: Daisy Agose
 - c. Time Keeper: Raisa Pelae
- **B.** Status Roles
 - a. Weekly Timesheet Collector: Raisa Pelae
 - b. Master Schedule Maker: Daisy Agose