IPR0 345

Fuel Cell/Geothermal Sustainable Energy at the USX Site

Team

• Students: CHE 496, CHE 296, IPRO 345

Team

• Subteams:

- Environmental
- Economics
- Design
- Ethics
- Deliverables

Problem

- There is a need for Clean and Sustainable energy
- There is a need to promote Fuel Cell and Geothermal Heat Pump technology

Solution

- Software tool
 User-friendly
 Easy-Access
 Design
 Cost
 Benefits
 Algorithm
- Database

Conceptual Design

Technology-Fuel Cell

- Electrochemical device
- Converts chemical energy to electricity
- Type: Molten Carbonate
- Fuel: Natural gas

Technology – Geothermal Heat Pump

- Taps stored energy of Earth
- Stores and uses waste heat from Fuel Cell
- Provides heating, cooling and hot water

Vertical Loop

Pond Loop

Design Assumptions

Household demand (2.5 persons/home)

- Electricity: 1.5 MWh/month
- Heat: .3MWh/month (assumes heat pump)
- "Off the shelf" units when possible
- Take advantage of government subsidies and grants

Economics

- Initial Total System Costs: \$5,420,000
- Developer cost
- instead of individua Annual Savings: \$400,000 Simple Payback Annual Savings:
- Simple Payback Period: 13.5 years
- Other incentives available

Number of years

Environmental

- Low emissions
- Low or negligible emission of SOx and NOx
- Carbon trading potential
- Methane can be used as a power source

(Traditional generation values from a Midwest Survey)

Software Design

- If specific data is unknown, the user imports the area of surfaces
- If specific data is known, the program takes the following values:
 - Location of project
 - •Types of Buildings
 - Number of Buildings
- Compare with eQuest

Algorithm Layout

Obstacles

- Software Design
- Scope of Project
- Remaining Objective
- Communication

Summary

- Fuel cell/Geothermal technology
- Environmentally friendly
- Potentially economically feasible
- Software design

Recommendations

- Enhance the database for wider implementation
- Increase thoroughness of economic analysis
- Minimize assumptions of design equations
- Develop optimization protocols
- Test the results against a real world case study
- Determine degree of marketability

Questions?

Copyright © 2005 Pearson Prentice Hall, Inc.