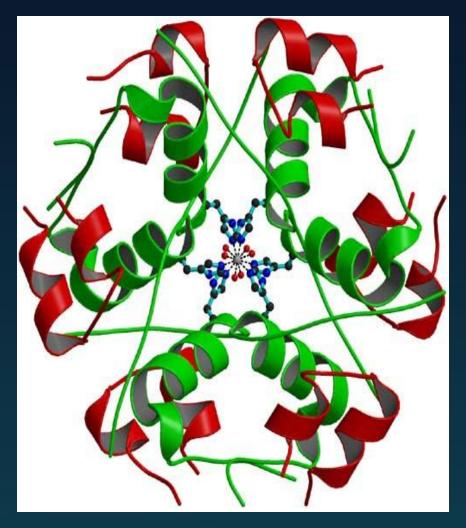
IPRO 308 Developing an Artificial Pancreas

0) (0)

Group Members

- Sean Callahan
- Jason Devgun
- Christie Ferraro


- Neil Mashruwala
- Maje Nazim
- Dukmin Park
- Anthony Ferrese
 Alok Patel
- Medhavi Gudivada
 Bhavin Patel
- Renen Manuntag
 Nathaniel Schuh

Breakdown of Presentation

- Background
- Project Design
- Project Implementation
- Accomplishments
- Conclusions

Diabetes

- Body does not make or properly use insulin
- Insulin required for metabolism of sugars
- 20 million
 Americans

Types Of Diabetes

Type 1
"Juvenile"
The body produces little or no usable insulin

Type 2 "Adult Onset" Insulin resistance causes insulin to be less useful

Adverse Effects of Diabetes

Hyperglycemia

Hypoglycemia

- Greater than 200 mg/dl
- High blood glucose
- Effects develop slowly
- Include: ocular neuropathy, poor circulation, and heart problems

- Less than 40mg/dl
- Low blood glucose
- Medical emergency called 'Insulin Shock'
- Results very quickly in slowed breathing, coma and even death

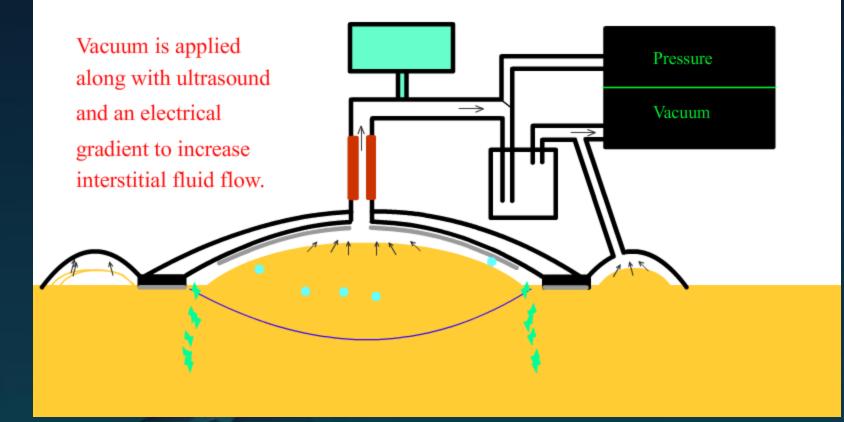
Monitoring and Delivering

- Blood glucose/insulin levels
- Venepuncture
- Painful and patient compliance suffers
- Non-Invasive techniques

Study Design – Project Goals

- Take ideas from last semester to lab settings
- Assessing the various components
 - Mechanical system
 - Vacuum pump
 - Ultrasound
 - Reverse Iontophoresis
 - Glucose measurement device
 - Vacuum trap for sweat/extracted sample
 - Microprocessor controller for insulin delivery

Past & Present


Fall '06

- Primary ideas
- Interstitial fluid
 extraction
 - Ultrasound
 - Reverse Iontophoresis
- Glucose measurement
 - Electrical impedance

Spring '07

- Ideas lab settings/ pig skin
- IIT, Rush Medical college
- Glucose Measurement
 - Optical Absorbance and Electrical Impedance
 - Tested accuracy and limit of detection

Prototype Artificial Pancreas

Division of Work

 Three main groups 1)Research 2)Prototype ISF extraction Glucose measurement Electrical impedance Optical absorbance spectroscopy 3)Patents

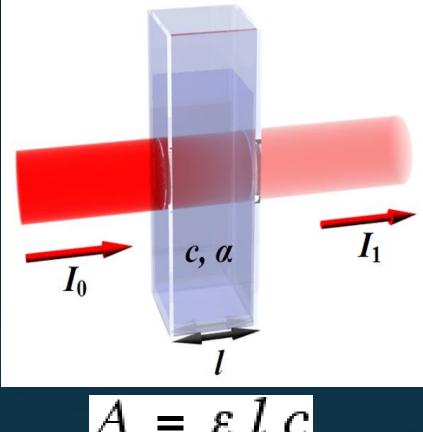
Ultrasound & Reverse Iontophoresis

- Ultrasound
 - increase pore size
 - facilitate transdermal drug delivery
 - punches microscopic holes in skin
- Iontophoresis
- Reverse iontophoresis

Electrical Impedance -Background $R = \frac{E}{T}$

- Ohm's Law
- Z is a function related to R
 - $Z_0 = Magnitude$
 - φ= phase shift
 - Current devices measure impedance through skin

$$Z = \frac{E(t)}{I(t)} = \frac{E_0 \cos(\alpha t)}{I_0 \cos(\alpha t - \beta)} = Z_0 \frac{\cos(\alpha t)}{\cos(\alpha t - \beta)}$$

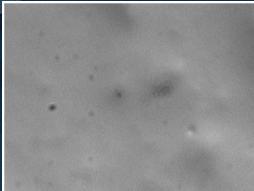


http://upload.wikimedia.org/wikipedia/en/0/08/MSO6014A.JPG

http://www.gamry.com/App_Notes/EIS_Primer/EIS_Primer.htm

Optical absorbance – Background

- Beer Lambert Law
- Optimum wavelength needed for measurement
- Consistent ε allows glucose measuremen
 - Current devices measure through skin

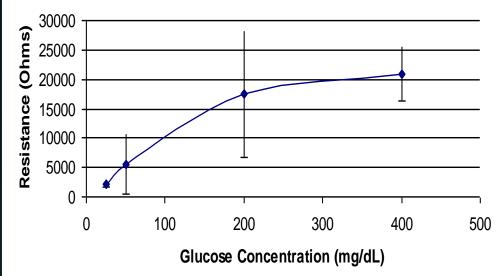

http://en.wikipedia.org/wiki/Image:Beer_lambert.png


Accomplishments

- Working ultrasound
- Extracted interstitial fluid
- Electrical impedance
- Optical readings
- Verification of Novel Idea

Prototype

- Theoretical Vacuum extraction
 - six hours
- Actual Vacuum extraction + ultrasound
 - six minutes at 26 mmHg

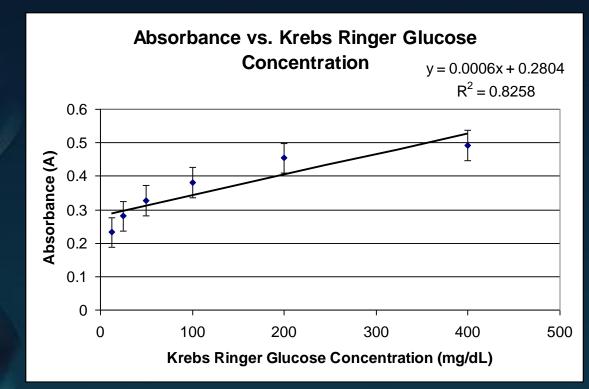

before

after

Electrical Impedance

 Glucose-D in **Krebs** Ringer solution tested Biophysics ECIS 1600 used to measure resistance of solutions

The Effect of Glucose Concentration in Krebs Biocarbonate Buffer on Solution Resistance


Optical Results

Krebs

 Bicarbonate
 Buffer used to
 model
 interstitial fluid

 Glucose-D

 used

Patent Research & Results

- Search terms: 'iontophoresis', 'transdermal patch', 'noninvasive', 'interstitial fluid', 'glucose sensor'
- Novel Points
 - Ultrasound + iontophoresis + vacuum simultaneously
 - Non-invasive insulin delivery transdermally
 - Automatic insulin calculation and delivery in a noninvasive device

IPRO 308 Team in Action

Also check out our website at: http://www.iit.edu/~ipro308s07

In Closing...

Progress
 This being said...
 »Ultrasound + vacuum Good
 »Reverse lontophoresis + Vacuum

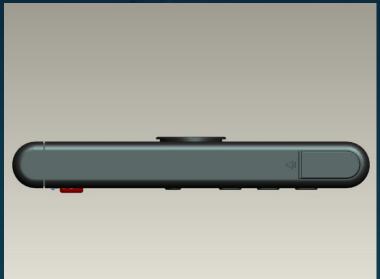
More work

Tasks for Next IPRO

1. Technical assessment of reverse iontophores

- 2. Optimization of iontophoresis
- 3. Develop embedded control
- 4. Assessment of safety of device
- 5. Exploration of device miniaturization
- 6. Establish optimum design for the device

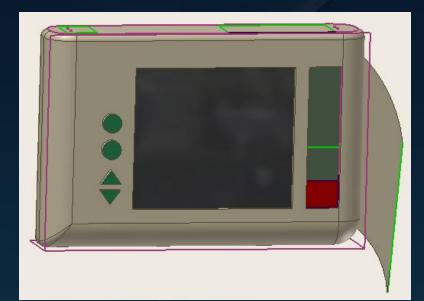
Business Opportunity

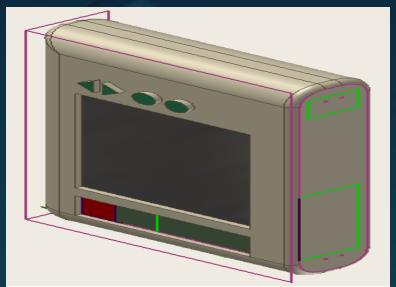

• Millions of Americans use insulin.

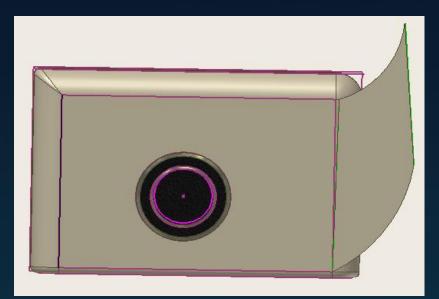
Top spot up for grabs

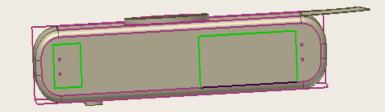
 Market: 44 billion - 100 billion of revenue each year.

Proposed Design









Proposed Design

Moral Benefits

 Everyone knows someone with diabetes

Improved quality of life

• Plus, it feels good to help people...

Acknowledgements

- Dr. Emmanuel Opara
- Mr. Ray Deboth
- Dr. Myron Gottlieb
- Dr. Hazel Lum (Rush Medical School)