IPRO 302 Coal Combustion Residuals (CCR) Solutions

Problem Statement

Evaluate the impacts of eliminating an ash storage pond from a power plant to meet pending EPA regulations and avoid future ash pond disasters.

Background Path From Coal to Energy

Coal Combustion Residuals:

steam 、

Fly ash and

Bottom Ash

IPRO 302's Focus

Tennessee Valley Authority (TVA) Kingston Fossil Plant Ash Spill - Dec 22, 2008

• Dike burst at 40 acre ash pond empoundment Dumped one billion gallons of coal ash into 300 acres of a rural east Tennessee community Prompted EPA to propose changes in how coal ash is classified New regulations may force plants to close their existing ash ponds

I P R O

PHOTO BY J. MILES CARY/ASSOCIATED PRESS, J. MILES CARY/ASSOCIATED PRESS

An Environmentally Sound and Cost Effective Solution to Handling Bottom Ash in Coal Power Plants

Assumptions (Provided By Sargent & Lundy)

Average coal power plant located in Illinois:

- 500 MW Power plant
- 200 tons/hr coal consumption
- 15 tons/hr bottom ash production
- 30 acre X 10' deep ash pond
- 2000 gpm ash sluice water

Objectives

To Determine:

- Current and pending coal combustion residuals (CCR) / wastewater regulations.
- CCR disposal and reuse alternatives.
- Waste water treatment and disposal alternatives.
- Pond closure and outsourcing opportunities.
- Costs and environmental implications of unlined ash pond

Team Structure

Regulations Sub-Team

Research current Environmental Protection Agency (EPA) regulations on the handling and disposal of bottom ash at coal powered power plants.

Current Bottom Ash Handling Sub-Team Research current methods of bottom ash handling and disposal

Alternative Bottom Ash Handling Sub-Team Identify alternative methods for handling bottom ash in power plant and at ash pond

Water Treatment Solutions Sub-Team Research methods for decontamination and removal of ash-pond water.

INTERPROFESSIONAL PROJECTS PROGRAM

furnace bottom SC - submeraec scraper conveyor bottom ash ecycled water ash pond recirculation water cooler

Research Analysis Diagram of Bottom Ash Conveyence Process

Article D: • Ash designated "Special Ash designated non-hazardous. Ash ponds must be • Ash ponds must be upgraded. Monitoring of all ash Utilities not required to monitor ash dumps. • Regulations only for • Ash generation, storage, disposal.

EPA's Proposed Regulations Changes Article C: Waste". phased out within 7 years. dumps is required. transportation, and disposal of coal ash are regulated.

ILLINOIS INSTITUTE OF TECHNOLOGY

IPRO 302 Coal Combustion Residuals (CCR) Solutions

IPRO 302's Recommended Steps Toward Eliminating Ash Storage Pond

An Environmentally Sound and Cost Effective Solution to Handling Bottom Ash in Coal Power Plants

minor: Architecture Shana Burnett Business Administration Sheena Enriquez Architecture Nicole Firnbach Architecture minor: Structural Engineering Andrew Gardner Civil Engineering & Applied Mathematics

(poster compiled by: Nicole Firnbach & Sheena Enriquez)

Conclusion

otal Cost of Ash Pond Closure	
Cost (\$ in millions)	
1,615,000	
151,600	
600,000	
11,200,000	
13,566,600	

Sources: Clyde Bergman Materials Handling Ltd, Ameren UE, Van Cleef Engineering Associates.

IPRO 302 Team

coal combustion residual solution

Robert Herman Electrical Engineering & Mathematics Daniel Kipp Mathematics & Computer Science Chad Parker **Business Admininstration** Graeme Port Humanities Susan Rafalko Computer Engineering Joseph Sanchez **Business Administration**

Acknowledgements Sponsor:

Advisors: Dr. Myron Gottleib Dr. Don Tijunelis

ILLINOIS INSTITUTE OF TECHNOLOGY