IPRO 302

Coal Combustion Residuals Solutions

TVA/KINGSTON Ash Pond Breach

Before spill (2006)

After spill (2009)

Aerial Image of Kingston Ash Slide 04/09/2009

0 500 1,000 1,500 2,000

Tennessee Valley Authority OE&R - ER&S Geographic Information & Engineering

Problem Statement

Eliminate ash storage pond from a power plant to meet pending EPA regulations and avoid future ash pond disasters.

Key Project Objectives

Evaluate the impacts of eliminating an ash storage pond from a power plant including:

•Current and pending CCR/wastewater regulations.

•CCR disposal and reuse alternatives.

•Waste water treatment and disposal alternatives.

•Pond closure and outsourcing opportunities.

•Costs and environmental implications of unlined ash pond closure.

Assumptions Provided By Sargent & Lundy

Typical coal power plant located in Illinois.

•500 MW Power plant

200 tons/hr coal consumption

15 tons/hr bottom ash production

•30 acre X 10' deep ash pond

•2000 gpm ash sluice water

Team Structure Created To Meet Objectives

TEAM CO-LEADERS		
Andrew Gardner	Civil Engineering	
Joseph Sanchez	Business	
•Nicole Firnbach	Architecture	

REGULATIONS SUB-TEAM:	
 Shana Burnett (Sub-team leader) 	Business
•Chad Parker	Business
•Jennifer Agosto	Business

CURRENT BOTTOM ASH HANDLING SUB-TEAM:		
•Graham Port (Sub-team leader)	Humanities	
Nicole Firnbach	Architecture	
•Andrew Gardner	Civil Engineering	

WATER	TREATM	ENT SOLL	JTIONS	SUB-TEAM
•Sheena	Enriquez	(Sub-team	leader)	

•Sneena Enriquez (Sub-team leader) •Dan Kipp •Robert Herman Architecture Computer Science & Applied Math Electrical Engineering

ALTERNATIVE BOTTOM ASH HANDLING SUB-TEAM

Joseph Sanchez (Sub-team leader)Susan Rafalko

Business Computer Science

Three Alternatives Were Considered

Major EPA Regulation Changes

Article C: Hazardous

- Ash designated "Special Waste".
- Ash ponds must be phased out in 7 years.
- Monitoring of all ash dumps is required.
- Ash generation, storage, transportation, and disposal of coal ash are regulated.

Article D: Non-Hazardous

- Ash designated nonhazardous.
- Ash ponds must be upgraded.
- Utilities not required to monitor dumps.
- Regulations only for disposal.

Recommendation Outline

1.Convert to dry ash handling system.

2.Establish a ground water monitoring zone.(GMZ)

3.Begin secure wastewater treatment and disposal.

4.Cap ash pond using geo-synthetic membrane cover.

Phase 1

Convert to dry ash handling system.

Current Bottom Ash Handling System

SUBMERGED SCRAPER CONVEYOR SYSTEM

- Widely used system.
- Requires water.
- Uses ash pond storage.

Benefits of Dry Bottom Ash Handling

- No water requirements.
- Minimize energy losses in bottom ash by 50%.
- Full compliance with EPA regulations.
- Improved bottom ash reuse.
- Low maintenance requirements due to automated system.

Selected Dry System: DRYCON

- Dry conveyer system
- Clunkers minimized by grinders
- Pressurized air cools ash
- Highly customizable
- Low maintenance

Source: Clyde Bergman Materials Handling Ltd.

DRYCON v. SSC

DRYCON

- No water required
- Reduces the energy which remains trapped in bottom ash and is lost by 50%
- Meets EPA regulations
- Profitable ash quality due to no ash saturation.

Submerged Scraper Conveyer

- Water required for cooling.
- Significant energy losses.
- Increased EPA restrictions.
- Higher disposal and maintenance costs.

Investment Cost Comparison

	DRYCON (\$)	SSC (\$)
Equipment Costs	1,400,000	850,000
Water Treatment	0	103,000
Crushing Equip.	42,700	42,700
Equipment Transportation	171,000	214,000
Total Investment	1,613,700	1,209,700

Source: Clyde Bergman Materials Handling Ltd.

INVESTMENT COST COMPARISON (\$)

Crushing Equipment

DRYCON (dry system)

Equipment

Water Treatment

Equipment Transportation

Annual Operating Cost Comparison

	DRYCON (\$)	SSC (\$)
Energy Consumption(\$0.14/kWh)	38,000	68,500
Cooling Water (\$0.03/m ³)	0	5,000
Ash Handling and Disposal	7,400	9,700
Service and Maintenance	24,000	62,000
Total Operating Costs	69,400	145,200

Source: Clyde Bergman Materials Handling Ltd.

ANNUAL OPERATING COST COMPARISON (\$)

Energy Consumption (\$0.14/kWh)

Cooling Water (\$0.03/m^3)

Ash Handling and Disposal

Service and Maintenance

DRYCON (dry system) SSC (wet system)

DRYCON v. SSC: Cost Analysis

- Initial investment is higher for Drycon.
- Annual operating costs for Drycon are 47% of SSCs.
- Cost savings can cover investment difference in 5 years.
- Cost data is based on a 800MW boiler size.

Increased CCR Resale Value

- With SSC, Bottom ash must be dewatered before resale.
- Dry system decreases bottom ash saturation.
- Dry bottom ash can then be resold at higher value.
- Applications include concrete, land-fill, and asphalt.

Bottom Ash Reuse

2009 Different Uses for Bottom Ash

Uses	Amount in short tons
Structural Fills/Embankments	2,944,354
Road Base/Sub-base	765,181
Blended Cement/Raw Feed for Clinker	720,828
Concrete/Concrete Products/Grout	555,996
Mining Applications	498,180
Miscellaneous/Other	467,192
Aggregate	452,066
Snow and Ice Control	207,250
Soild Modification/Stabilization	188,504
Flowable Fill	113,395
Blasting Grit/Roofing Granules	78,156
Waste Stabilization/Solidification	5,867
Agriculture	3,696
Total Bottom Ash Used	7,000,665
Total Bottom Ash Produced	16,600,000

Source: American Coal Association "2009 Coal Combustion Product (CCP) Production & Use Survey Report" Feb 8, 2011

43.7% reuse of bottom ash

Benefits of Bottom Ash Reuse

- Diverts waste disposal from landfills and ash ponds.
- Decreases the impacts on human health and the environment.
- Save money on bottom ash conveyance and disposal costs.
- Generate revenue from selling bottom ash products.

PHASE 2

Establish a ground water monitoring zone.

Ground Water Monitoring Zone Is a Critical Aspect of Pond Closure

EPA must approve ground water monitoring zone before implementation

- Ensures ash pond closure is within full EPA compliance.
- Promotes secure treatment and disposal of wastewater.

Ground Water Monitoring Zone Basics

- Monitoring wells are drilled around ash pond area.
- GMZ required to manage on-site contamination.
- System can be managed on and off-site.

PHASE 3

Outsource ash pond wastewater treatment and disposal.

Wastewater Must Be Treated Before Safe Disposal

- Chemical solutions and extraction wells both considered.
 - Chemical removal systems are not cost effective.
 - Extraction wells pose a risk of long term seepage.
- Best option is to outsource task to wastewater specialists.

Waste Water Treatment/Disposal Outsourcing Costs

- Estimate of costs for complete wastewater removal and disposal: \$600,000
 - Charah is one example of a wastewater disposal contractor
 - Based in KY, but serves IL as well.
 - www.charah.com
 - Firm is highly experienced with wastewater disposal and complete pond closures.

PHASE 4

Cap ash pond using geo-synthetic membrane cover.

Ash Pond Will Be Covered

Excavation of ash pond:

- Approximately \$200 million.
- Most expensive alternative

Cover ash pond

 Geo-membrane, compacted clay, and layered earth caps were all considered

• Capital costs for a 500 MW plant range between \$7.5 - \$13.7 million.

Geo-Synthetic Membrane is Best Option

- Current technology is environmentally safe and readily available.
- Porous membrane will allow for natural ground flow.
- 2 feet of soil and vegetation will cover the membrane.
- Estimated capital cost for cover is \$11.2 million.

Recommended System Conversion Process

- 1. Convert to dry ash handling system.
- 2. Establish a ground water monitoring zone (GMZ).
- 3. Outsource wastewater treatment and disposal.
- 4. Cap ash pond using geo-synthetic membrane cover.

Total Costs of Ash Pond Closure Recommendation

Closure Activity	Cost (\$)
DRYCON Investment	1,613,700
Ground water monitoring zone	151,600
Wastewater Treatment/Disposal	600,000
Geo-synthetic Membrane Cover	11,200,000
TOTAL CAPITAL COSTS	13,566,000

Sources: Clyde Bergman Materials Handling Ltd, Ameren UE, Van Cleef Engineering Associates.

Potential For Future IPRO Research

 Patents and advanced technologies for bottom ash handling can be further explored.

Wastewater management solutions in other industries.

Impact of clean coal technology on proposed solutions.

Lessons Learned

- Benefits of project planning early in the process.
- Team management and delegation.
- Communication in a team setting.
- The value of punctuality and respecting others' time.
- The importance of keeping a log of time spent working on a project and the content of said work.

QUESTIONS?