

Tagging XML data
for our Mediator

Team Members:

Axel Arditi

Steve Beitzel

Eric Jensen

Ali Alhamed

Kalyan Chakravarthy

Valentin John Torres

Team Leader: Michael Saelee

Faculty Project Manager: David Grossman

Overview

• Introduction and Background

• Description of our XML Tagger

• Testing

• Demonstration

Background

• Last semester we built a prototype mediator which
takes a user query and poses it to a variety of
different data sources.

• In the worst case, it is as good as existing
metasearch engines.

• Example query: “What are the three best
restaraunts in Chicago?”
– Metasearch would search for the word “three”
– Mediator would identify appropriate sources to answer

the question, such as a database of restaurant
information.

Adding Data
• We wished to expand the searchable dataset for

our mediator.
• We acquired the source text for the Undergraduate

Bulletin and wished to add it to our mediator as a
semi-structured data source.

• To do this, we needed to build an XML “tagger”
that would take a raw text file and add XML
“tags” to it, providing it with some structure.

• The tagging process was able to unify the format
of all the source data to the Bulletin

• Once data was tagged, we added it to the mediator.

Spring ‘99

Fall ‘00

Input Data

• Three key sections
– Overview of department with faculty listing

– Requirements for a major
– Sample Curriculum

Input Data Section 1:

Input Data
Section 2:

• Description…………….

• Title……………

• Required Courses…….

Input Data Section 3

XML Tagging Text

• Support for quantitative, structured queries
depends on having an element of structure
present in the data

• XML, the eXtensible Markup Language is a
semi-structured format

• We developed software to add XML tags to
the IIT Undergraduate Bulletin, enabling
our mediator to answer quantitative queries

Tagging the data

Undergraduate
Catalog

(plain text)

XML
Tagger

(built this semester)

XML
Tagged
Catalog

Ready for feeding
to the mediator.

Sample XML Output
<department xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="/usr/local/share/ipro/IITCourseBulletin.xsd">
 <name>Computer Science</name>
 <overview> Computers have changed what we do and how we do it …</overview>
 <faculty>
 <member chairType="Interim" isChair="true">
 <name> Edward Reingold </name>
 <office>
 <number>236B</number>
 <building>Stuart Building</building>
 </office>
 <extension>Extension 75150</extension>
 </member>
 <member rank="Professor">
 <name>Campbell</name>
 </member>
 <member rank="Professor">
 <name>Carlson</name>
 </member>
 ….

Sample XML Query
• To obtain a listing of “member” elements in a specific department’s

faculty section for full professors
– Natural language query: “find all full professors in the computer science

department”
– XQL query: //department[name=“Computer Science”]

//faculty/member[@rank=“Professor”]

Result:
 <xql:result xmlns:xql="http://metalab.unc.edu/xql/">

 <member rank="Professor">

 <name>Evens</name>

 </member>

 <member rank="Professor">

 <name>Frieder</name>

 </member>

 </xql:result>

Approach

• Documented existing mediator

• Learned Java

• Worked to incorporate IIT Undergraduate
Bulletin Data into our mediator
– Learned XML
– Designed XML schema

– Partitioned input documents into three
segments (one for each developer).

Team Meetings

• Extensive code review of all software

• Agreed to coding standards and
modifications to the schema

• Take minutes and publish on web site
http://cs.iit.edu/~wsearch

• Develop schedule and check schedule at
each meeting.

Results

• 1100 lines of java that has produced 26 files
of correctly tagged XML

• Simple integration of XML data into the
mediator.

• Simple user interface to our newly tagged
XML documents

Team Assignments

• Steve and Eric
– maintained XML schema ensured all built components talked to

each other. Built configuration file.

• Axel
– Overview, department title, faculty

• Kalyan
– Major, description, required courses

• Ali
– Sample Curriculum

• Val
– independent software testing
– provided non-CS insight into what we were doing

XML Schema

• The first step in tagging the bulletin was to
define what XML we wanted as an output

• We used the XML Schema language to
precisely define the format that each of the
department entries from the bulletin should
take

• We used this schema to validate that we
produced the correct XML for the data

High Level Schema

Department

Faculty OverviewMajor

Required
Courses

Sample
Curriculum

Sample from our Schema
<schema>
 <annotation>
 <documentation>
 Illinois Institute of Technology course bulletin schema
 (undergraduate, but possibly graduate in the future)
 </documentation>
 </annotation>
 <element name="department" type="DepartmentType"/>
 <complexType name="DepartmentType">
 <element name="name" type="string"/>
 <element name="overview" type="string"/>
 <element name="homepage" type="string" minOccurs="0" maxOccurs="1"/>
 <element name="faculty" type="FacultyType"/>
 <element name="major" maxOccurs="unbounded">
 <complexType>
 <element name="name" type="string"/>
 <element name="description" type="string"/>

Tagger Generalization

• All document-specific data, including anchor
strings and regular expressions, are stored in a
simple configuration file.

• This allows us to easily adapt the tagger to support
changes in the source data or the XML schema.

• In addition to being flexible, this approach adds
extensibility, making it easy for us to add new
methods to the parsing process.

Example of Config File
section0=departmentName
section1=overview
section2=faculty
section3=major
section4=requiredCourses
section5=description
section6=sampleCurriculum

sectionRE0=\\A([^\n]+)\n
sectionRE1=\\A[^\n]+\n(.+)\n\nFaculty\n
sectionRE2=\\A[^\n]+\n.+\n\nFaculty\n(.+)
sectionRE3=(.+)([0-9]+)

semester=^Semester ([0-9]+)
course=^([A-Z]+) +([0-9]{3}) +([A-Z].*[A-Za-z]) +([0-9]*) +([0-9]*) +([0-9]*)$
ipro=^([A-Z]+) +([I]{1,2}) +([A-Z].*[A-Za-z]) +([0-9]*) +([0-9]*) +([0-9]*)$
elective1=^(.+ [Ee]lective[s]*) +([0-9]*) +([0-9]*) +([0-9]*)$
elective2=^(.+) +([1-7]00)-level course +([0-9]*) +([0-9]*) +([0-9]*)$
elective3=^(.+) elective/minor +([0-9]*) +([0-9]*) +([0-9]*)$
courseName=([A-Z].*[A-Za-z]) +[|] +([A-Z].*[A-Za-z]) \n*
totalHours=^Totals +([0-9]{1,2}*) +([0-9]{1,2}*) +([0-9]{1,2}*)$
totalCurriculumHours=^Total Credit Hours +([0-9]{2,3})$
. . .

Regular Expressions

• Regular Expressions are constructs that can be
used to match specific patterns within unstructured
data.

• We used them to enhance the flexibility of our
parsing code, making use of the 30 years of
engineering that have been put into them.

• This regular expression will match the word
“Semester” followed by an integer from 0-9:
– Semester ([0-9])

Section 1: Input Data

• Name
• Description

• Dept. Chair
• Faculty

Used to Build:

- <name>

- <overview>

- <faculty>

Section 1:
Department Title and Overview

• Straightforward problem if isolating
blocks of text and processing.

• These two pieces of data had few
organizational discrepancies.

• The title of each department was
always on the first line of each
department file.

• The overview is always located
between the department title and the
faculty section.

• Employed the use of Regular
Expressions to selectively select
parts of the whole file reliably.

Dept. Title

Overview

Faculty

(next slide)

Section 1:
Faculty

• The Faculty section provided a more
interesting challenge than the other
two sections.

• Once the body of the faculty section
was isolated, further sub-processing
needed to be done.

• Need to detect and handle special
entries (ie. Chair).

• Need to properly build all
“member” sub-tags of the “faculty”
tag.

• Once isolated as a whole, the entire
faculty section was processed on a
line-by-line basis.

Faculty Start

“Chair” entry

Faculty End

Professor entries

Section 1:
Regular Expressions

• \\A([^\n]+)\n

- Matches First Line of Document

• \\A[^\n]+\n(.+)\n\nFaculty\n

- Matches between first line and
“Faculty”

• \\A[^\n]+\n.+\n\nFaculty\n(.+)

- Matches after “Faculty”

Section 1:
Final Production

Faculty Section: Example Output

Edward Reingold

236B Stuart Building

Extension 75150

Raw Data:

Result:

<member isChair="true" rank="Chair">

<name>Edward Reingold</name>

<office>

 <number>236B</number>

 <building>Stuart Building</building>
 </office>

<phone>Extension 75150</phone>

</member>

• The faculty tag was
designed to have
many “member” tags

•This is a “member”
tag

Section 2:
Data

• Description…………….

• Major Title……………

• Required Courses…….

Section 2:
Major Title

• The module uses the data file which is given to me
by the program which contains the major section.

• The major title is located in front of the
description.

• If the description is not present in the data file then
I assume that it is present before the required
courses section.

Section 2:
Description

• The description tag is built after the major title is
built.

• This is the easiest of all the things assuming the
description is available to me from the data file.

• Some files have missing descriptions. It still
handles the missing sections gracefully.

Section 2:
Required Courses

•The required courses section
proved very challenging.

•Dealt with requirements and
electives. Which are very
different.

Section 2: Example Output
• A typical sample XML file generated

from the required course section.
<requirement discipline="Computer Science" listType="electives">
 <totalHours>15</totalHours>
 </requirement>
 <requirement discipline="Mathematics" listType="courses">
 <totalHours>17</totalHours>
 <course>
 <department>MATH</department>
 <number>151</number>
 </course>
 <course>
 <department>MATH</department>
 <number>152</number>
 </course>
 <course>
 <department>MATH</department>
 <number>251</number>
 </course>
 <course>
 <department>MATH</department>
 <number>474</number>
 </course>
 </requirement>

Input Data

Computer Science Electives 15

Mathematics Requirements 17

MATH 151, 152, 251, 474

Section 2: Discrepancies
• Assumed all the data files are in the format of

Computer Science curriculum.
• eg. Of other data files which had discrepancies.
• Psychology Requirements 33

• PSYC 204, 221, 222, 301, 303, 406, 435 |or 436, 482, 483, 487, 488

• Introduction to the Profession 100 (2 semesters) 4

• Psychology Electives 15

• Mathematics Requirements 6

• MATH 122, 221

• Computer Science Requirement 2

• CS 105

• Natural Sciences Requirements 12-13

• CHEM 124, BIOL 107 and/or 115*, PHYS 211

Section 3:
Sample Curriculum

• Semester
– Semester number
– Total hours
– Courses

– Electives
– Special Electives

Section 3:
Courses

Sample Output

<course>

 <department>CS</department>

 <number>100</number>

 <name>Introduction to the Profession I</name>

 <labHours>2</labHours>

 <lectureHours>1</lectureHours>

 <totalHours>2</totalHours>

</course>

Course

Number

Department
Name

Lecture Hours

Total Hours
Lab Hours

Sample Input data

CS 100 Introduction to the Profession I 1 2 2

Section 3: Electives

Sample Output

<elective>

<discipline>Social science</discipline>

<labHours>0</labHours>

<lectureHours>3</lectureHours>

<totalHours>3</totalHours>

</elective>

<elective>

<discipline>Humanities</discipline>

<level>100</level>

<labHours>0</labHours>

<lectureHours>3</lectureHours>

<totalHours>3</totalHours>

</elective>

Elective

Discipline
Level

Lecture Hours

Total Hours
Lab Hours

Sample Input Data

Social science elective 3 0 3

Humanities 100-level course 3 0 3

Section 3: Example Output
<sampleCurriculum>
 <semester number="1">
 <course>
 <department>CS</department>
 <number>100</number>
 <name>Introduction to the Profession I</name>
 <labHours>2</labHours>
 <lectureHours>1</lectureHours>
 <totalHours>2</totalHours>
 </course>
…………………….

 <elective>
 <discipline>Humanities</discipline>
 <level>100</level>
 <labHours>0</labHours>
 <lectureHours>3</lectureHours>
 <totalHours>3</totalHours>
 </elective>
 ……………………..

<elective>
 <discipline>Social science</discipline>
 <labHours>0</labHours>
 <lectureHours>3</lectureHours>
 <totalHours>3</totalHours>
 </elective>
 <totalHours>15</totalHours>
 </semester>
</sampleCurriculum>

Section 3:
Regular Expressions

• Some regular expressions for this section:
– Semester Number

• ^Semester ([0-9]+)

– Course String
• ^([A-Z]+) +([0-9]{3}) +([A-Z].*[A-Za-z]) +([0-9]*) +([0-9]*) +([0-9]*)$

– IPRO String
• ^([A-Z]+) +([I]{1,2}) +([A-Z].*[A-Za-z]) +([0-9]*) +([0-9]*) +([0-9]*)$

– Elective Course String
• ^(.+ [Ee]lective[s]*) +([0-9]*) +([0-9]*) +([0-9]*)$

– Special Elective Course String
• ^(.+) +([1-7]00)-level course +([0-9]*) +([0-9]*) +([0-9]*)$

– Total Semester Hours
• ^Totals +([0-9]{1,2}*) +([0-9]{1,2}*) +([0-9]{1,2}*)$

Social science elective 3 0 3

Testing Phase

• Check to ensure continuity between the source
data and the produced XML.

• Check text format to update schema of new data.
• Check to ensure that the Tagger produces valid

XML files.

• Report any errors identified for correction.
• For xx files, we have yy missing fields, zz

errors, etc.

Testing Process

Untagged
Input

Errors

XML
Tagged Ouput

Schema
XML

FILES

Schema

Tagger

Validator

User Interface Testing

• Planned user interface testing with IPRO
xxxx.

• Some meetings with IPRO xxxx provided
helpful requirements to facilitate testing.

• Requirements were met, but too late for any
user interface testing this semester.

• Input from user interface team has already
helped our prototype.

Summary & Future Work

• We developed a functional prototype for tagging
the IIT Undergraduate Bulletin with XML.

• The produced XML files can be used as a data
source for our mediator.

• Our mediator now has support for semi-structured
queries, adding yet another dimension to its search
capabilities.

• In the Spring we hope to extend the tagger so that
more university data can be searched with our
mediator.

	Tagging XML data for our Mediator
	Overview
	Background
	Adding Data
	PowerPoint Presentation
	Input Data
	Input Data Section 1:
	Input Data Section 2:
	Input Data Section 3
	XML Tagging Text
	Tagging the data
	Sample XML Output
	Sample XML Query
	Approach
	Team Meetings
	Results
	Team Assignments
	XML Schema
	High Level Schema
	Sample from our Schema
	Tagger Generalization
	Example of Config File
	Regular Expressions
	Section 1: Input Data
	Section 1: Department Title and Overview
	Section 1: Faculty
	Section 1: Regular Expressions
	Section 1: Final Production
	Faculty Section: Example Output
	Section 2: Data
	Section 2: Major Title
	Section 2: Description
	Section 2: Required Courses
	Section 2: Example Output
	Section 2: Discrepancies
	Section 3: Sample Curriculum
	Section 3: Courses
	Section 3: Electives
	Section 3: Example Output
	Section 3: Regular Expressions
	Testing Phase
	Testing Process
	User Interface Testing
	Summary & Future Work

