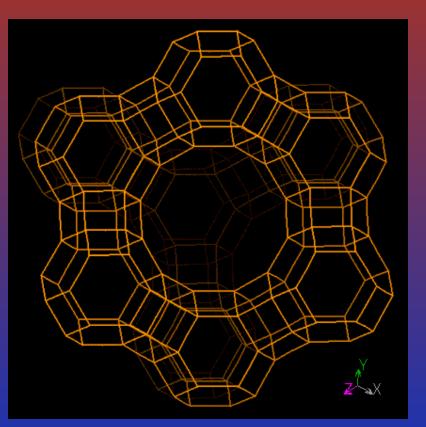
In-Situ Characterization of Zeolite Synthesis Process

IPRO 302 – SPRING 2003

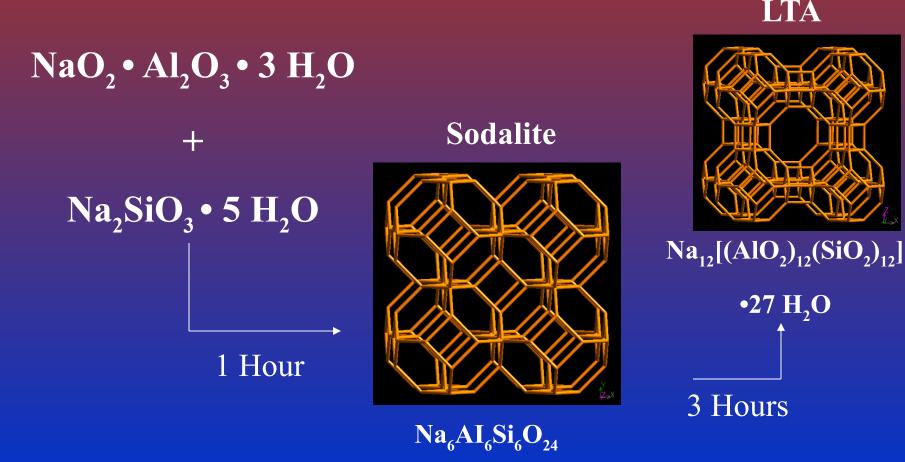

Student Team Members: Adam Griner, Guhyun Chung , Jooyoung Ahn, Nabeel Azeez, Narae Lee Faculty Advisor: Prof. Ishaque Khan – BCPS Department. IIT Chicago, IL

Presentation Overview

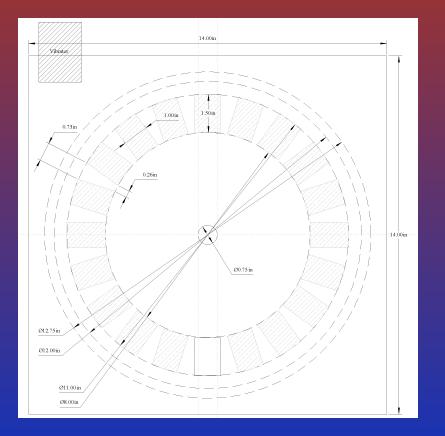
- Introduction to Zeolites
- Why is this project beneficial?
- Motor, Heater.
- Plastic, Damping.
- Possibilities.
- Acknowledgements.

Introduction to Zeolites

- Zeolites
 - Porous
 - Naturally occurring
 - Synthetic
 - Aluminosilicates.
- Rigid Pores Dimension
 - Small compounds to fit inside
 - Larger compounds cannot.

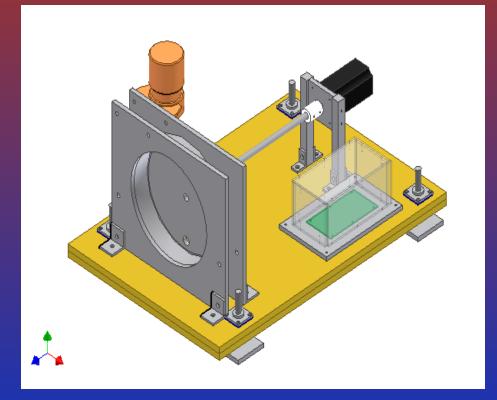

Structure of Faujasite (FAU)

Significance in this Project


- Zeolites characterization
 - Traditional post-synthesis,
 - *In-situ* studies recent development
- Structural changes can be studied.
- Traditional *in-situ*
 - Single synthesis inefficient
- Multiple syntheses
- Combinatorial analysis

Reaction

The IPRO Team must be able to produce a reaction in the lab before testing at the APS. - Chosen synthesis : Preparation of Linde Type A (LTA)



Before and After

Last semester's design Only the cell housing was complete

Before and After

- Wheels for mobility
- Base for stability
- Adjustable height

Motor

• Connect to computer

Motor

• Stepping at 18 degrees


H MSTerm		
File Edit Wew Transfer Upgrade! Window Help		
D 🗳 🖬 🖇 🖶 🚭 📾 🕲 📚 🕇 \downarrow 🛛 X 🖸		
📲 Program1.txt	Terminal 1	
	ms 2	
	>sl 4000	
	- 31 +000	
	>	
-		
NUM CAPS INS 1 1	Capture Connected Comm 1: 9600,N,8,1	

Microstep Resolution Settings (MS)		
Steps/Rev		
Binary Microstep Resolution Settings		
400		
800		
1,600		
3,200		
6,400		
12,800		
25,600		
51,200		

Decimal Microstep Resolution Settings	
5	1,000
10	2,000
25	5,000
50	10,000
125	25,000
250	50,000

Table 2.6: Microstep Resolution Settings

Plastic

Finalist • Plastic: Polycarbonate • Formula: C₁₆H₁₄O₃

• Melting Point: 220°C

Shaker

- Products required to be in suspension for characterization to occur.
- Shaker model: Vibco #SCR-100

Heater

- Control temperature.
- Radiant heat.
- Operate under hydrothermal conditions.

Heater

- Tubular Electric Heater.
- Temperature Controller.
- Solid State Relays.
- Fine Tip Temperature Probe.

- Wooden base.
- Wide-base steel legs.
- Motor suspended so that x-ray has space to pass through.

Hydrothermal conditions

- Required to counter pressure that develops in the teflon pouches.
- Use of steam at 200 C.
- Safety Concerns.

Damping

- Shaker causes reaction cell to vibrate.
- Translational movement may disrupt x-ray beam and prevent good results.
- Different damping methods: Mass Loading, Structural Reinforcement, Extensional Damping.
- Rubber layer attached to base legs.
- Motor side wrapped Visco-elastic Damping Foil.

Approach

• Confirm technique

- Teflon pouches
- Mixing
- Conformity

Approach

• Test cell at the Advanced Photon Source

Possibilities

- Quick analysis
 - Traditional
 - 20 samples = 3 hours prep + 10 hours analysis
 - In situ
 - 20 samples = 3 hours prep + 0 hours analysis

Possibilities

- Better understanding of zeolite formation
- *In situ* analysis more common in industry
- Creating "customized zeolites" for a client
 - Environmental cleanup
 - Petroleum hydrocarbon "cracking"

Acknowledgements

- Thomas Torres
- Intelligent Motion Systems
- Omega Engineering
- Saadia Tabussum
- Samar Ayesh

Questions?