Team Members

Alexander Derdelakos Kyle Gillmeister Francis Gotanco Robert Hill Amar Rana Jon Perry Mike Sullins

> **Advisors** Dr. S. Mostovoy Prof. W. Maurer

Prepared by: a.derdelakos

The Problem

Goals

- Organization
- **The Strategy**
- Implementation
- Current Analysis and Results
- Conclusion

Next Steps

A Finkl & Sons Co

- Founded 1879
- Processes 100,000 tons of steel annually
- Manufactures 100% of steel in Chicago
- Distributes to 18 countries around the world
- Steel Processes include
 - Melting
 - Re-melting
 - Forging
 - Heat Treating
 - Machining

A. Finkl & Sons Co., Chicago, IL Finkl.com

Milling Machine in Operation Kyle Gillmeister

Broken Insert

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Milling

• Typically the last stage of processing before distribution

- Smoothing and Finishing
- Multi-Million dollar annual process

Milling Machine

- 100+ year old process
- 18" Diameter milling head
- 18 Tungsten carbide inserts per machine

A. Finkl & Sons Co., Chicago, IL Finkl.com

Milling Machine in Operation Kyle Gillmeister

Broken Insert

The Problem

Goals

- Organization
- **The Strategy**
- Implementation
- Current Analysis and Results
- Conclusion

Next Steps

Operational Problems

- Broken Inserts
 - Multi-Million dollar problem
 - Causes stress to machine and other inserts furthering damage
 - Damages finish resulting in re-milling and time loss

A. Finkl & Sons Co., Chicago, IL Finkl.com

Milling Machine in Operation Kyle Gillmeister

Broken Insert

The Problem

Goals

- Organization
- **The Strategy**
- Implementation
- Current Analysis and Results
- Conclusion

Next Steps

Detect and Notify

- Build on previous semesters work
 - Use of accelerometers and data acquisition software (labView) to detect failure
 - Use of data analysis software (diaDEM) for real time notification

Accelerometer Mounted on Milling Machine

The Problem

Goals

- Organization
- **The Strategy**
- Implementation
- Current Analysis and Results
- Conclusion

Next Steps

Accelerometer

- A device which measures acceleration
- In this case, vibrations caused by the milling machine

Data Sets

baseline

tooth

- Predetermined specific data sets
 - O Missing Teeth -
 - 1 Missing Teeth simulates broken
 - 2 Missing Teeth further risk to total s system failure
- Others as necessary

Accelerometer Mounted on Milling Machine Kyle Gillmeister

The Problem

Goals

Organization

- **The Strategy**
- Implementation
- Current Analysis and Results

Conclusion

Next Steps

Balance

- Project Leader: administration
- Three Sub-Leader:
 - Research- alternatives and other information
 - Data Collection- visit Finkl site for data collections and use of LabView software
 - Data Analysis- knowledge of the physics behind PSD and other analysis possible; use of DIAdem

Adaptability

• Ability to shift members from one group to another depending on work load

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Collect Data

The accelerometer is connected to LabView; a data acquisition program that monitors and records data based on a set of parameters determined by its programmer.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Analyze Data

The data collected in our trials is then sent to DIAdem, a data analysis program that processes and extracts information for use by the team to determine the most distinguishable properties for the detection of insert damage and breakage.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Checks and Balances

It has been determined that the most effective way to reach our goal in such a noise polluted environment is to have a series of several checks so as to avoid false alarms.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Check 1: The Trigger

It is understood that in a typical scenario when an insert fails, it fails catastrophically. This destruction of a carbide insert results in a significant shock to the system that is easily identified by the monitoring program.

DIAdem: National Instruments

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Check 2: Pre / Post Trigger Waveform Analysis

Reacting to a trigger the program saves a predetermined amount of data from before and after the event. This data is split into full rotational increments; these increments are then integrated to produce the Power Spectrum Density (PSD) for analysis.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Check 3: Limited Frequency PSD

By zeroing in on specific frequencies we can be more assured that the changes are attributed to the actual milling process rather than fluctuations from the environment or machine.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Unpredictable Testing

A difficulty arises in the implementation testing for such a procedure due to the unpredictable nature of insert breakage.

Data Collection Session (October 2010)

The Problem

Goals

- Organization
- The Strategy
- Implementation

Current Analysis and Results

Conclusion

Next Steps

Trigger Testing

Event Peak

At this time we have ample data to conclude that the trigger threshold will occur above 1.0g.

Robert Hill

The Problem

Goals

- Organization
- **The Strategy**
- Implementation

Current Analysis and Results

Conclusion

Next Steps

Pre/Post Trigger analysis and Limited Frequency PSD

Due to the unpredictable nature of insert breakage we must collect data under the scenarios that we know occur after an insert breakage.

2 inserts missing

Robert Hill

2750 3 elopex (H)

2500 UpperEn

The Problem

Goals

- **Organization**
- The Strategy
- Implementation

Current Analysis and Results

Conclusion

Next Steps

Pre/Post Trigger analysis and Limited Frequency PSD

After collecting the data under these different scenarios we increment the waveforms into rotational segments.

0 inserts missing

The Problem

Goals

- Organization
- **The Strategy**
- Implementation

Current Analysis and Results

Conclusion

Next Steps

Pre/Post Trigger analysis and Limited Frequency PSD

We can then focus on the waveform of a single rotation of the milling head.

0 inserts missing – 1^{st} revolution

Robert Hill

The Problem

Goals

- Organization
- The Strategy
- Implementation

Current Analysis and Results

Conclusion

Next Steps

Pre/Post Trigger analysis and Limited Frequency PSD The analysis is then applied and a PSD is produced.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

FINKL & SONS CO.

Pre/Post Trigger analysis and Limited Frequency PSD

When the PSD from different data sets are compared a power drop is seen as inserts are removed.

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Pre/Post Trigger analysis and Limited Frequency PSD

As this process is repeated across many sets of data a pattern emerges. From this pattern a threshold can be determined that distinguishes a when an inserts is broken or damaged.

PSD Sum Pass 01 55.0-60.0 Hz

0,1,2 missing inserts: 50-60Hz - comparison PSD

The Problem

Goals

- Organization
- **The Strategy**
- Implementation
- Current Analysis and Results
- Conclusion

Next Steps

Pre/Post Trigger analysis and Limited Frequency PSD

Successful but inconsistent results as a consequence of the data collection method.

Data Collection Session (October 2010)

The Problem

Goals

- Organization
- **The Strategy**
- Implementation
- Current Analysis and Results
- Conclusion

Next Steps

Further Testing

Based on the results gathered this semester we recommend:

- 1. A triaxial accelerometer be used for further data collection.
- 2. The accelerometer must be permanently affixed to the milling machine.

Silicon Designs

The Problem

Goals

Organization

The Strategy

Implementation

Current Analysis and Results

Conclusion

Next Steps

Further Testing

With a new method of analysis much new data is needed to prove the legitimacy of this discovery. The same idea must be tested on a number of different variables.

> Variables to consider Milling Machine RPM Feed Rate

Cut Depth Material Properties

etc.

The Problem	
Goals	Acknowledgments
Organization	Chuck Loeppert
The Strategy	Liz Bilitz
	Ray DeBooth
Implementation	Jennifer Keplinger
Current Analysis and Results	Dave Snyder
	Keith Crawford
	Craig and Russ from the IIT mill shop
Conclusion	
Next Steps	

