Net Zero Zero Energy Home

Problem:

To design a net zero energy, zero carbon emission, high efficiency green home at a competitive cost relative to neighboring units.

Background:

This IPRO was sponsored by Mr. Jimmy Eng who presented the group with the problem of designing a zero energy home. Homes today are still being built with the same construction techniques that have been in use for hundreds of years, and yet this architecture is temporary rarely surviving fifty years before it would need to be torn down and rebuilt. All over the world groups are trying to solve the problem everyone around the world is experiencing of limited natural resources and land. This IPRO took a step closer to finding the solutions this semester.

Objective:

Our goal was to design a three-unit condominium building on a specific 100 ft. by 25 ft. Chicago-style lot with the following conditions in mind:

- "non-disposable" design with a minimum three hundred year design life.
- lower maintenance fees over the lifespan of the building
- maximum physical and psychological comfort
- zero energy use and zero carbon emission
- looking beyond existing building codes and technologies
- cost of construction be comparable to similar sized structures in the area (\$1.7 million construction cost for a three flat building)

Methodology:

The IPRO team was split into multiple subgroups under subgroup team leaders to accomplish specified goals throughout the course of the semester. Information from existing green technologies, literature, and journals pertaining to the strength of materials, as well as other relevant design information available, were gathered and used as part of our research. Each team consulted with experts in the fields when needed to supplement their research. Throughout the course of our research and investigations, a variety of different software was used to aid in our design. Equest (Energy Modeling Software) was used to estimate and analyze the overall energy usage of the building. MathCAD assisted in any structural calculations that needed to be done as well as calculating the overall R-values for the building. AutoCAD was utilized to draft all elements of the building, which include architectural and structural components. Revit and ArchiCAD were also used for 3D modeling and architectural problem solving. Additionally, the building was designed in accordance with the Chicago Building Code. Other codes accepted by the city of Chicago were used as well.

CASE STUDY # ' SMITH HOUSE (PASSIHAUS)

URBANA, ILLINOIS EDWARD SINDELAR BUILDERS KATRIN KLINGENBERG AND NICOLAS SMITH ARCHITECT

2 BEDROOMS AND 1 BATH 1,200 SO FT.

COST = \$94 PER SQ. FT. ANNUAL ENERGY USE = 14.8MMBT

- NDOOR AIR QUALITY HRV CONSTANTLY EXCHANGES AI INSEED OIL FLOOR FINISH
- WATER-RASED SEALANT ON THE CONCRETE FLOORE NON-VOC WALL PAINTS
- SOLID WOOD COUNTERTOP
- TOILETS AND LAUNDRY WILL EVENTUALLY BE FED BY A RAINWATER COLLECITON SYSTE
- COOLING: HRV WITH 1,000 WATT ELECTRIC RESISTANCE HEATING ELEMEN COUPLED TO AN 8 INCH DIAMETER X 100 FT. LONG EARTH TUBE BURIED 6F BELOW GRADE WATER HEATING: A TANKLESS WATER HEATER WITH SPARE CONDUIT FOR A SOLAR THERMAL SYSTEM TO BE INSTALLED LATER.
- UPERINGULATION OUNDATION = R - 56 + R - 2 4 IN. CONCRETE SLAB OVER 14 IN. EPS FOAM SURROUNDED BY CONCRETE-BLOCK FOUNDATION WALL COVERED IN 6 IN. OF EPS
- WALLS = R 60 VERTICAL 12 IN. I-JOISTS WITH 12 IN. BLOWN-IN-FIBERGLASS
- INSULATION # 4 IN EPS FOAM OVER THE EXTERIOR TO BRIDGE GAS ROOF = R - 60 16 IN. IJOISTS WITH VENT CHANNELS ABOVE THE SHEATHING AND 1 VINDOWS = U - .19 TRIPLE-PANE, ARGON FILLED LOW-E, FIBERGLASS FRAMES WITH XPS

ECYCLED TUB, FIXTURES AND MEDICINE CABINET 00% REGIONALLY SOURCED WOOD (FIR, PINE, AND CED ECYCLED SLATE CLADDING ON THE FOUNDATION ECYCLABLE BLOWN-IN-FIBERGLASS INSULATION

Below grade construction

FERRACE FORM

CASE STUDY # 2

DULUTH, MN J AND R SUNDBERG BUILDERS WAGNER ZAUN ARCHITECTURE **3 BEDROOMS AND 2 BATH** 2,660 SQ. FT. COST = \$94 PER SQ. FT. ANNUAL ENERGY USE = 19.4 MMB1

INDOOR AIR QUALITY WHOLE-HOUSE HRV NO CARPETING

WATER: DUAL-FLUSH TOILETS

LOW-FLOW FAUCETS RAIN BARRELS FOR ROOF WATER COLLECTION BATHROOMS ARE STACKED CLOSE TO THE MECHANICAL ROOM

HEATING AND COOLING: EVACUATED TUBE SOLAR COLLECTION SYSTE WITH A 275 GALLON INSULATED TANK. RADIANT HEATING EPA-RATED WOOD STOVE WITH A DEDICATED COMBUSTION AIR ROUTE BACK UP HEATING FROM A GAS-FIRED TAKAGI NO AIR CONDITIONING

- SUPERINGULATION FOUNDATION = R - 40 + R - 60
- ICF WITH 8 IN. POURED WALLS + 4 IN. XPS EXTERIOR INSULATION 5 IN. CONCRETE SLAB OVER 12 IN.
- VALLS = R 5314 IN. THICK WITH WOOD 2X4'S, 1/2 IN. OF EXTERIOR OSB. 1/2 IN. INTERIOR GYPSUM. THE INTERIOR IS STUFFED WITH
- ROOF = R 88 26 IN. DEEP PARALLEL CHORD TRUSSES WITH CONTINUOUS V CHUTES AND 24 1/2 IN. OF BLOWN CELLULOSE INSULATIO
- VINDOWS = U .17/.19 RIPLE-PANE, ARGON FILLED LOW-E, INSULATED FIBERGL RAMES WITH THERMAL SPACERS
- BAMBOO FLOORING ON THE MAIN LEVEL

WATER-BASED CONCRETE STAIN ON THE LOWER FLOOR CELLULOSE INSULATION STANDING SEAM METAL ROC

Erosion of R value

Minimal reduction i

greenhouse gas emis

Service life 30 to 50 year

May contain adhesives an

VOCs that off-gas Wood and moisture p

an ideal environr

Poor wind rating

Fire rating in minul

Constant R value for life

Up to 50% Energy Savir

Reduces areenhouse (missions by up to 1/3

non-toxic and do no

No nutrient source exist

in structure for mold

 Wind rated up to 200 mph

Fire rated for up to

 Up to 4X Stronger Up to 4X More Soun

4 hours

3 tons annuall Will last for generation table). These ICFs are very durable, thus aiding in meeting our goal of durability. The ICFs do not loose their R-value over time which means that the thermal envelop created for the housing unit will be consistent over time. Unlike over insulating a wood-framed building and creating a 'sick home,' the Logix walls provide no environment for mold growth. This means that the home is green, healthy and durable.

Heating and Cooling Load Tables First Floo

	R-13	R-30	R-50		R-3	R-7	R-14
Heating	2,345	1,016	610	Heating	2,345	1,016	610
Cooling	1,172	508	304	Cooling	1,172	508	304
\	Vest Wall (Btu	's/Hour)		West V	Vindows/Panel	s (Btu's/Ho	our)
	R-13	R-30	R-50		R-3	R-7	R-14
Heating	2,501	1,123	674	Heating	640	274	165
Cooling	1,295	661	337	Cooling	320	137	82
s	outh Wall (Btu	r's/Hour)		South V	Nindows/Pane	ls (Btu's/H	our)
	R-13	R-30	R-50		R-3	R-7	R-14
Heating	599	256	154	Heating	720	309	186
Cooling	299	129	77	Cooling	360	155	90
N	lorth Wall (Btu	's/Hour)					
	R-13	R-30	R-50				
Heating	615	226	160				
	307	133	80				

leating and Cooling Load Tables Second Floo

	R-13	R-30	R-50		R-3	R-7	R-14
iting	2,619	1,126	676	Heating	1,150	498	24
ling	1,309	563	338	Cooling	579	249	12
We	st Wall (Btu's	/Hour)-1		West Wi	ndows/Panels	(Btu's/Ho	ur)-1
	R-13	R-30	R-50		R-3	R-7	R-14
ting	2,218	954	572	Heating	920	395	19
ling	1,108	477	286	Cooling	460	198	9
So	uth Wall (Btu'	s/Hour)-1		South W	indows/Panels	(Btu's/Ho	ur)-1
	R-13	R-30	R-50		R-3	R-7	R-14
ting	403	173	104	Heating	920	396	23
ling	242	104	52	Cooling	552	237	11
No	rth Wall (Btu's	s/Hour)-1					
	R-13	R-30	R-50				
ting	615	226	160				
lee.	307	133	80				

	R-13	R-30	R-50		R-3	R-7	R-14
Heating	1,984	860	516	Heating	600	257	128
Cooling	902	430	258	Cooling	300	128	6-
	West Wall (Btu's	/Hour)-1-1		West Win	dows/Panels	Btu's/Hou	r)-1-1
	R-13	R-30	R-50		R-3	R-7	R-14
Heating	1,984	860	516	Heating	600	257	128
Cooling	992	430	258	Cooling	300	128	64
	South Wall (Btu's	/Hour)-1-1		South Wi	ndows/Panels	(Btu's/Hou	ar)-1-1
	R-13	R-30	R-50		R-3	R-7	R-14
Heating	403	173	104	Heating	920	396	237
Cooling	242	104	52	Cooling	552	237	119
	North Wall (Btu's	/Hour)-1-1					
	8.13	R-30	R-50				
	P1-10		160				
Heating	615	226	100				

Zoning Map

Load Tables