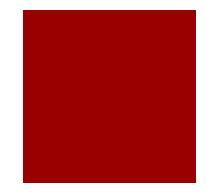
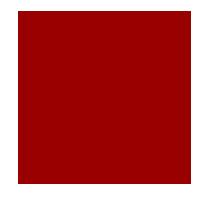

IPRO 319: New Technology for Cardiac Arrest Victims



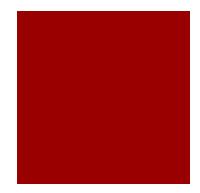
Presenters: Grant Austin and Jennifer John


Presentation Outline

- Introduction
- Goals
- Team Structure
- Timeline
- Results
- Obstacles
- Future Challenges
- Conclusion

Cardiac Arrest

- Disruption of heart activity
- In the US,
 - 265,000 cardiac arrests outside hospitals
 - 18% survival rate after discharge in hospitals
 - 95% of victims die before reaching hospital
- Induced hypothermia reduces neurological damage
- Z-axis oscillation along the spine, shown to be better than normal CPR

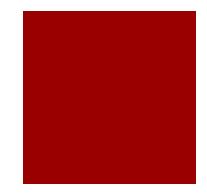


Previous Work

- Spring 2006: Oscillator for testing mice
- Fall 2006: Developed oscillation table for U of C
- Spring 2007: Basic cooling jacket model
- Spring 2008: Cooling jacket
- Fall 2008: Reduced oxygen breathing mask
- Spring 2009: Investigated chemical cooling and effects of oscillation
- Fall 2009: Designed and constructed oscillator and cooling bed prototypes

Project Goals

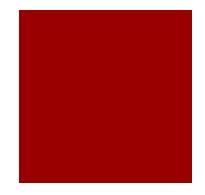

- Develop and investigate two devices:
 - rapid cooling bed/blanket
 - periodic z-axis accelerator



Mission Statement

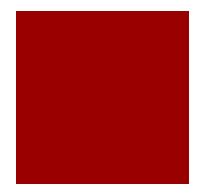
Develop and improve upon cooling and oscillation technologies

Team Structure

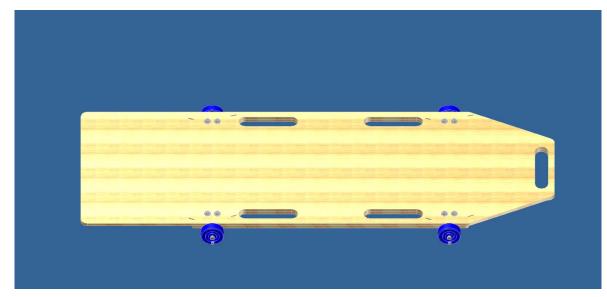


Team Development and Performance

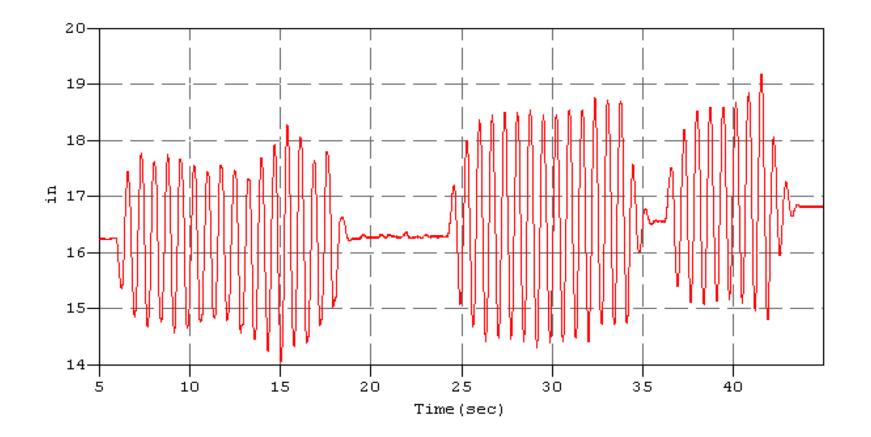
- Learning how to work together
 - Helping other subgroups in areas each individual member has expertise
- Continuously challenging one another
 - Weekly presentations of progress
 - Intense brainstorming and Q&A sessions
- Developing communication skills

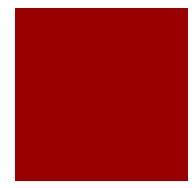


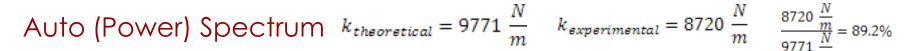
Timelines of Progress

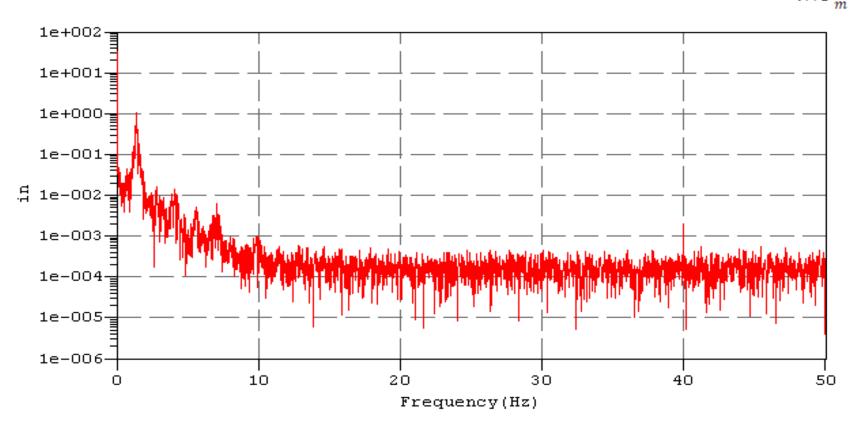

		AUGUST				SEPTEMBER				OCTOBE	ER		DEC					
<u>Estimated</u>		Week 1			k 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9 Week 10		Week 11 Week 12		Week 13 Week 14			Week 15
		24 25 26 27 28 31	1 1 2 3 4	7 8 9	10 11	14 15 16 17 18	21 22 23 24 25	28 29 30 1	2 5 6 7 8 9	12 13 14 15 16	19 20 21 22 23	26 27 28 29 30	2 3 4 5 6	9 10 11 12 13	16 17 18 19 20	23 24	25 26 27	30 1 2 3 4
TASKS	Discuss Technologies																	
	Design Prototype																	
	Order Parts																	
	Receive Parts																	
	Construction of Prototype																	
	Testing and Debugging																	
	Modification of Prototype																	

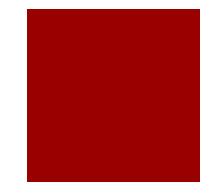
		AUGUST					SEPTEMBER					OCTOB	ER		NOVEMBER						
<u>Actual</u>		Week 1	We	eek 2	Wee	k 3	Week 4	Week 5	Wee	k 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	W	/eek 14	Week 15	
		24 25 26 27 28	31 1	2 3 4	789	10 11	14 15 16 17 1	18 21 22 23 24 25	28 29 30	12	56789	12 13 14 15 16	19 20 21 22 23	26 27 28 29 30	2 3 4 5 6	9 10 11 12 13	16 17 18 19 20	23 24	25 26 27	30 1 2 3	4
TASKS	Discuss Technologies																				
	Design Prototype																				
	Order Parts																				
	Receive Parts																				
	Construction of Prototype																				
	Testing and Debugging																				
	Modification of Prototype																				


Shaking Table Design


- Force per wheel is:
 - $Flin=macrit=(100kg)*(5.884m/s^2)=161.81N.$
- Thus, 4 wheels of radius 3 ¹/₂" with springs each with spring rating of 34.290 lbf-in.


Shaking Table Results

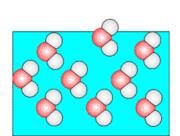

Linear Displacement vs. Time (sec)

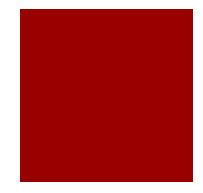


Shaking Table Results

Cooling Design

Chemical Reaction vs. Phase Change

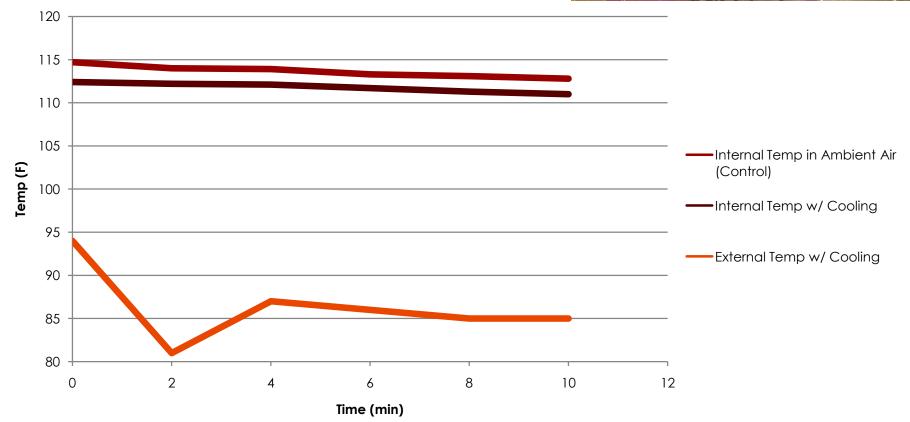

Ammonium Nitrate and Water:


 $Ba(OH)_2 * 8H_2O_{(s)} + 2NH_4NO_{3(s)} \longrightarrow Ba(NO_3)_{2(s)} + 2NH_{3(aq)} + 10H_2O_{(1)}$

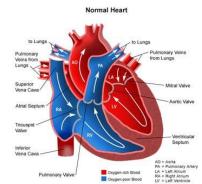
Cooling Capacity: 197.4 kJ/kg

Phase Change: R125a

Cooling Capacity (from EES software): 238.5 kJ/kg

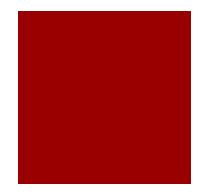

Cooling Design

- Found a suitable material
 - Manipulated via heat sealer
- Tube system to channel refrigerant throughout bed
- Developed pop-rivet/washer valve mechanism to simplify tube attachment
- Custom refrigerant holder optimized ease of use
- Testing the bed alone proved the cooling surface reached temps of -15 F

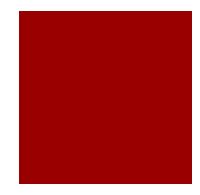

Cooling Results

Cooling Test-Warm Turkey

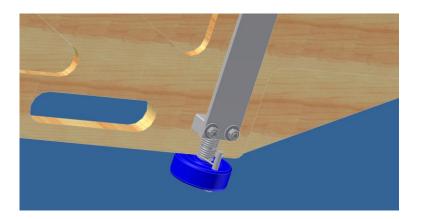


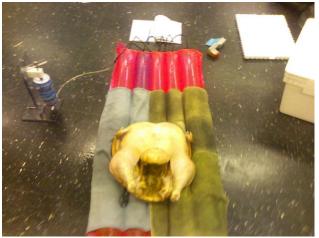

Obstacles

- Designing devices that the average person would feel comfortable using
- Time & money
- Developing accurate mathematical models
- Constructing an accurate model prior to living subject testing
 - One-way valves?
 - Connecting the heart to system?
- Implementation of devices



Ethical Issues


- Testing on Humans
- Making a decision for a victim that could be physically damaging
 - Negative effects of shaking
- Documents of Interest
 - Universal Declaration of Human Rights
 - Nuremberg Code
 - Belmont Report
 - International Ethical Guidelines for Biomedical research involving human subjects
 - Public Act 096-078



Achievements

- Successfully created two working prototypes: one for cooling and one for oscillation
- Tested prototypes: cooling on a bodytemperature turkey and acceleration with human weight
- Learned to manage tasks in parallel to contribute to more than one subgroup

Recommendations

- Cooling:
 - Thinner bed for better evaporation/skin interface
 - Gel conducting material
 - Better refrigerant containment system
- Oscillation:
 - Refine design of full-scale model
 - Animal and human testing
 - Increase stability of subject
- Overall:
 - Revising EMS protocol to adapt new technology

Questions?

Special thanks to Francisco Ruiz, Ray DeBoth and the IPRO Office