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Abstract 

 

This semester, this IPRO group has worked to develop a system that measures the applied 
torque at a bicycle crankset. In contrast to current solutions, we are attempting to be able 
to retrofit our system to existing cranksets, obviating the need to abandon parts that the 
bicyclist already owns. In principle, according to preliminary tests performed at the 
MMAE department, this can be done using sets of quite inexpensive strain gages. 
However, being able to get accurate torque measurements requires some advanced 
processing of signals from the strain gages. These signals can then be transmitted 
wirelessly to a bicycle computer like the Garmin Edge 705 that the global positioning 
system corporation Garmin has released last spring. There is a defined wireless protocol, 
called ANT+Sport, which has been developed specifically for the purpose of transmitting 
exercise data, such as power output or heart rate, to small computers. After future 
semesters of this project, it is hoped that the market potential of a commercial product 
can be realized in a follow-up ENPRO project.  
 

Background 

 

 The goal of the IPRO is to find an inexpensive, but accurate way of measuring the 
power output of a rider on a bicycle.  Problems with systems currently available are: 
some products are not compatible with all bike systems causing the need to purchase new 
parts, the cost of the available products is expensive, and some of the available measuring 
systems are not very accurate.  
 There are four main ways in which systems measure the power output of a rider. 
They include crank set, free hub, chain, and opposing force systems.  The crank set 
system uses strain gages to measure the strain in the crank set which can be related to 
torque from which the power is calculated.  The free hub system works in much the same 
way except the strain gages are attached to the rear wheel of the bicycle. Chain systems 
detect the vibration frequency and the speed in the chain and convert that to a power 
reading.  Opposing force systems calculate opposing forces to the rider and bicycle 
including: gravity, drag, acceleration of the bicycle, and wind speed.  The system takes 
all this information and calculates the power using Newton's Third Law.  
 The crank set is what the pedals are directly attached to on the bicycle.  The crank 
set includes the spider, which is attached to the crank arm, and the chain rings, which 
drive the chain.  The freehub is used to connect the chain to the rear wheel. 
 Crank set systems can be very complicated and therefore are very expensive.  Not 
only are the systems themselves expensive, but the system requires a new crank assembly, 
causing the replacement of an expensive part of the bicycle.  The Quarq CinQo has an 
accuracy of ± 2%, but costs $1495 (1).   
 The free-hub systems have problems similar to the ones involved in crank set 
systems. Their measurement accuracy is diminished because the power output of the rider 
is not directly measured.  The PowerTap Pro made by Saris has an accuracy of ±1.5%, 
but costs $1,199.00 with the computer (2). 
 Inaccuracy is a bigger problem with the chain systems because of power loss from 
the crank to the chain as in the free-hub systems as well as vibration in the chain caused 
by other factors including terrain.  The Polar CS600 cycling computer with power output 
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sensor has an accuracy of ± 5%, and is less expensive than the crank set and free-hub 
systems at $419.95 (3) which also includes the bicycle computer. 
 While cost is not as much a factor in the opposing force systems as in the crank 
set systems the accuracy can be far less.  The inaccuracy can be caused by drag which is 
affected by rider position, weight fluctuation of the rider, as well as the roughness of 
riding surface.  The iBike Pro claims to have accuracies comparable to those of high end 
models, like the crankshaft and free-hub systems, but it becomes more inaccurate in sharp 
turns or long stretches of rough terrain.  The cost of the iBike system is $689.00 (4). 
 Another side of the project is the interaction with the rider.  This is done through 
the bicycle computer.  The computer processes the information from the power 
measurement systems and displays it for the rider to see.  Problems faced with the 
computers involve finding a way to relay the information wirelessly. The Garmin Edge 
705 bicycle computer will be used to communicate the information to the rider.  The 
ANT+Sport system will be used for communication between the computer and the rest of 
the system. 
 Results from the project's survey concluded that the cycling community wants a 
more affordable system than what is currently available, with the majority of the people 
surveyed selecting a $800-$1000 budget range. The cycling community also prefers a 
device which does not require either a crankset or hub replacement. 
 During the last semester (first semester of this IPRO), the team was able to 
implement the strain gage system in a crank set.  However, they did not attain accurate 
results and found that the crank angle needed to be figured into the algorithm that 
allowed calculation of the power.  A method of testing was also developed, but will be 
improved in order to speed up the process.  For the electrical side the previous team was 
able to come up with a power circuit as well as make great progress on a reading circuit 
as well as a start on the wireless communication needed from the system to the bicycle 
computer.   
 

Objectives 

 
Electrical Team Objectives 

 The major objective of the electrical team is to develop an electrical system that 
can be used to measure the power usage of a cyclist. To develop this system, the team 
needs to: 

1. Trigger measurement at specific angles using Reed switches 
2. Amplify the voltage to a value that can be used in the calculations of the 

force 
3. Minimize electronic noise  
4. Convert the analog signal to digital for use in calculation 
5. Develop code to transmit power output to the Garmin bike computer using 

the wireless ANT+ protocol  
 A problem encountered last semester was the inability to obtain a set of 
coefficients independent of the crank angle. As a solution, the team decided to use Reed 
switches to measure the angle of the crankset. This was to help determine which strain 
gages to read from and therefore, present a more accurate reading of the force being 
applied. 



 5 

 
Mechanical Team Objectives 

 The mechanical team objectives are listed below: 
1. Define strain gage position on crankset 
2. Apply strain gages on the crankset 
3. Design an experiment to measure the output of the strain gages under 

different load conditions 
a. Crank angle 
b. Point of force application 

i. Left pedal 
ii. Right pedal 

c. Outer chain ring vs. inner chain ring 
4. Analyze data and implement an algorithm to calculate torque 

 The mechanical team decided to use Wheatstone bridges as opposed to quarter 
bridges. This makes the circuit less complicated as well as provides a stronger signal.   
 

Methodology 

 

Electrical Team  Methodology 

 The Electrical team methodology was to plan, implement, and debug individual 
circuits, building on the results from the previous semester. Once complete, they are 
combined to form the final product. Individual circuits include strain gage amplification, 
ANT+ wireless communication, and RPM and Crank Angle monitoring. The strain gage 
circuit was designed to accept signal information from 4 individual Wheatstone bridges. 
These signals are passed individually though 4 low-resistance/low-noise switches, 
amplified by an instrumentation amplifier and finally passed to the microcontroller’s 
Analog-to-Digital converter. This value can then be processed by an algorithm, from 
which the power output can be calculated and sent via wireless transmission to a Garmin 
Edge 705 cycling computer.  
 Changes from the proposed Project Plan 

• The electrical team extended allowed time to work on ANT+ 
communication due to a bug in the microcontroller  

• The team did not design the PCB layout because they needed to focus 
resources on other tasks 

• Strain gage circuit required additional time to develop and refine 
 

Mechanical Team Methodology 

 The initial research was done to see what was currently available for power 
measurement. It was decided that a system of strain gages was to be used to measure the 
strain in each spider arm (Figure 1). This data would then be used to create an algorithm 
which would relate the strain to the applied torque and would allow for a method of 
measuring the power of a cyclist. A total of 4 bridges of strain gages were used, one for 
each spider arm and a separate bridge for the two spider arms to which the crank attaches 
to (Figure 2). The mechanical team was responsible for gluing and calibrating the strain 
gages and subsequently collected the needed data. 
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Figure 1. Placement of strain gages inside spider. 

 
Figure 2. Placement of four Wheat stone bridges on crank set. 

 The mechanical setup involved loading the crank set apparatus under the Instron 
5500 (Figure 3). A load of 90 lbf was applied at several angles ranging from 0-180 
degrees. The zero degree reference is when the pedal is in a vertical position at the top. 
Measurements were taken for the inner chain ring as well as the outer chain ring. The 
strain data was recorded using the Vishay 6200 scanner (see Figure 4) as well as the 
Strain Smart software.   

4 

3 

2 1 
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Figure 3. Measurement of angle before load is applied by the Instron 5500.  

 
Figure 4. Vishay 6200 scanner. 

 Changes made to the project plan: 

• The testing started about a month late because the strain gages took more 
time to glue than expected. Testing started on April 9th. 

• The strain gage data acquisition machine had to be sent to the 
manufacturer for repair so extra time had to be allowed for this. 

• The old crankset was never tested. 
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Team Structure and Assignments 

%ame Major / Year Subteam 
IPRO 

Assignments 

Contribution 

Tarun Anupoju 
Computer Engineering 

4th Year 
Electrical 

Wireless 
Communication 

Wireless Team: ANT+ development, helping 
out with the Stain gage circuit, Conducted 

survey for IPRO by sending questionnaire to 
websites and to major universities in Illinois 

which generated the maximum amount of 
responses possible for the online survey. 

Stephanus Halim 
Computer Engineering 

3rd year 
Electrical 

Wireless 
Communication 

Construction and debugging of strain 
measurement circuit, helped with ANT+ 

wireless development.  

Bryan Kaminski 
Electrical Engineering 

4th Year 
Electrical 

 
Electrical Team 
Leader, Gage 

Interface 

Team Leader 
Design and debug of strain measurement 

circuit; ANT+ development 

Brian Lam 
Mechanical 

Engineering/Physics 
4th Year 

Mechanical Testing, MATLAB 
Apply strain gages, acquire and analyze data 

Brandon Marcellis 
Aerospace Engineering 

3rd Year 
Mechanical 

Mechanical Team 
Leader, Strain 
Gages Testing 

Mechanical Team Leader, apply gages, work 
with measuring equipment, acquire and 

analyze data 

Rebecca Martin 
Mechanical Engineering 

4th Year 
Mechanical 

Apply Strain 
Gages, Testing, 

Scribe 

Prepared the spider for strain gages 
application, applied and tested strain gages. 

Project's scribe and webmaster. 

Edumaregbemiro 
Odunaiya 

ECE 4th Year Electrical Gage Interface 
Design of strain measurement circuit; Helped 

out in biking team survey and in design of 
poster 

Stefan Stevanovic 
Mechanical Engineering 

3rd Year 
Mechanical 

Testing, Apply 
Strain Gages 

Designed reed switch ring, had testing 
apparatus modified for new crank set, acquire 

and analyze data, worked with measuring 
equipment 

Henrietta Tsosie 
Mechanical Engineering 

4th Year 
Mechanical 

Apply Strain 
Gages, Testing 

Project Leader, strain gages application, and 
data analysis, abstract, compiling final report 

Ivan Voukadinov 
Mechanical/Aerospace 

Engineering  
4th Year 

Mechanical 
Pro/E, Apply strain 

gages, Testing 

Applying strain gages, testing and analyzing 
data 

Arkadiusz Ziomek 
ECE 

4th Year 
Electrical Gage Interface 

 
Design and debugging of measurement 
circuit; work on ANT+;  

Table 1. Team structure and team member assignments.  
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Budget 

ITEM 

U%IT 

PRICE QTY PRICE PURPOSE Vendor 

Electrical           

MSP430 Dev Kit $20.00  1 $20.00  Wireless Multiple 

INA 122 (Amplifier) $5.00 1 $5.00  Amplifier 
Texas 
Instruments 

Voltage regulator $5.00 1 $5.00  Regulate Voltage 
National 
SemiConductor 

Switches ADG 801 $4.00  4 $16.00  Switching Bridges Analog Devices 

Support Components --   $54.00  
Batteries & other 
electronics Multiple 

Soldering tips $6.15  4 $24.60  Soldering 
HMC 
Electronics 

Mechanical           

Crank Set $142.90  1 $142.90  R & D Shimano 

Bottom Bracket $38.00  1 $38.00  Testing apparatus Kozy’s Cyclery 

Half Bridge Gages (5 pack) $50.00  6 $300.00    Vishay 

Final Presentation, Materials           

Refreshments and food     $100.00  Team Building Multiple 

    Total $705.50      

Table 2. Budget of IPRO 324. 
 

Code of Ethics 

 

 The purpose of the project is to create a final power measuring device for road 
bicycles that is more affordable than current available products. This will be done while 
maintaining the principles of honesty and integrity for sake of both the biking community 
as well as the invested stakeholders. 
 
7 Layers of Integrity 
1) The Law 

i) Members shall respect and abide by the laws stated by the United States. 
ii) Intellectual Property  

b) Example 
i) Patent laws exclude other parties from using design of product. Members may 

feel the need to copy patent in order to get a working product with results in 
time. 

2) Contracts and Agreements 
i) Members shall not engage in contracts or legal agreements by outside sources 

without proper approval. 
b) Example 

i) Members agreed to participate in discussion and take part in requirements of 
project. 

ii) Members also agreed to work towards to the objectives and goals of the team. 
3) Professional Code of Ethics 

i) Members will abide by the engineering code of ethics provided by ASME and 
IEEE. 
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b) Example 
i) Members are expected to use their knowledge in their respective fields to 

benefit the project and protect the safety, health, and welfare of the public. 
Prevent faulty engineering and false data. 

4) Industry Standards 
i) Members are not certified engineers therefore will not remake the product 

without the consent or supervision of the certified engineers involved with the 
project. 

5) Social, Civic and Geographic Communities 
i) Members are to respect and abide by the social, civic, and geographic 

communities affected by the project.  
b) Example 

i) Members will try to understand the values and standards among the 
communities in which they operate. 

6) Personal Relationships 
i) Relationships inside and outside the team are to be respected and will be 

treated with a professional manner. Mutual respect amongst team members is 
expected. 

b) Example 
i) The project is not the only one thing that any team member has and stress may 

sometimes engage members in arguments that lead to personal attacks. These 
should always be treated in a professional manner. 

ii) The educational opportunity is the most important factor and should be 
respected. Ideas and questions are never disregarded and some may feel 
disrespected when their ideas are dismissed.  

7) Moral and Spiritual Values 
i) Team members will not accept credit for another team member’s work. 

Assignments will not be divided unfairly amongst teams. 
b) Example 

i) Team members may feel the need to accept work for praise by sponsors or 
other members. 

ii) Members may assign more tasks to team members that have been getting them 
done which can be unfair to other team members. 

iii) Collected data can not be falsified or exchanged in order to complete tasks. 

 

Results 

 

Electrical Team Results 

 The electrical team successfully designed and implemented a circuit which 
measures the revolutions per minute (RPM) as well as process strain gage signals and 
transmits data wirelessly. The results are described below: 
 
1) Main Microcontroller 
 The microcontroller used for the final application this project was the 
PIC18F4331 (5). This microcontroller was programmed using the Microchip ICD2 (6) 

development hardware, which interfaces with the MPLAB IDE (7). The code for the 
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program is written in C and utilizes the Microchip C18 Libraries (8). A note of caution: 
the datasheet for the PIC18F4331 lists two pairs of pinouts for the SPI data port, citing 
one set as “alternate” pins. The use of these “alternate” pins is not thoroughly described 
in the datasheet, but the correct pins are noted on the final schematic (Appendix A).  
 
2.) Power supply  
 1V and 3V supplies were used in the circuit. A voltage regulator keeps the output 
at a constant 1V, which is then used to drive the strain gages. The team used a LP3878 (9) 

voltage regulator from National Semiconductor to achieve this (See Appendix A). The 
output voltage is currently fixed at 1V, but can be changed by selecting a different ratio 
of resistors R1 and R2. Consult the datasheet for more information. This eliminates error 
in calculating the corresponding strain value. The change from the quarter bridge to the 
full bridge required a change in the measurement circuitry. Two switches are being used 
for each bridge. This modification prevents saturation of the amplifier thereby allowing 
all the bridges to work efficiently. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Circuit block diagram. 

 
3.) RPM Circuit 
 In order to calculate the power generated by the rider, the torque must be 
multiplied by the RPM. RPM measurement is implemented by a simple Reed switch and 
magnet combination. When a magnet passes over the Reed switch, the circuit is closed, 
allowing for current to pass through. Eight Reed switches are placed at an angle of 45 
degrees apart from each other. One switch is wired to a single pin on the microcontroller, 
while the other 7 are wired in parallel to another pin. These pins are set up as “Interrupt-
on-Change”, which means a change on the pin (caused by the magnet) will cause the 
microcontroller to jump to the interrupt routines. The single switch is taken as the 
reference point or 0 degrees. Once the reference switch is activated, a timer in software 
begins to count how long until the next time the reference switch is activated. This is how 
the RPM can be calculated. Every time one of the other switches is activated, a counter is 
incremented, from which the angle of the crank can be roughly estimated 
(0°,45°,90°,135°,180°, 225°, 270°, or 315°). 
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4.) Wireless Communication 
 One of the objectives of the electrical team was to implement the ANT+ chip to 
wirelessly transmit data to a handheld receiver which would display the power details to 
the cyclist. The team successfully communicated data from the circuit to the bicycle 
computer. This was implemented by following the specifications provided by ANT+, 
which are located in the data sheets on iGroups. (See Appendix B for Source Code).  
 
5) Amplification Circuit 
 For amplification of the strain gauge signal, a Texas Instruments INA122 is used, 
which is a single-supply instrumentation amplifier. The signal from the strain gages can 
have both a positive and negative swing, so in order to be able to read the negative swing, 
the amplifier must be provided with a reference voltage which shifts the output of the 
amplifier within an acceptable range. For this design, the supply voltage is 3V, so the 
reference voltage is set to 1.5V, which allows the amplifier output to swing roughly 
+/-1.5V. Then, a voltage read below 1.5V can be interpreted as “negative” and higher 
than 1.5V can be interpreted as “positive”. The reference voltage pin on the amplifier 
requires a low-impedance input, so a buffer (MAX4475) is used to set this voltage. The 
offset voltage can then be adjusted by using the potentiometer connected to pin 3 of the 
buffer (10), (Also See Appendix A). 
 
Mechanical Team Results 

 It was decided that strain gages be placed on the crankset as full Wheatstone 
bridges each on an arm of the spider (Figure 2).  It was found that the strain in the 
crankset was dependent on the angle and which chain ring the chain was attached.  It was 
decided that the strain be measured at eight different angles of the crank arm each 45° 
with the angles offset from the directly vertical angle at which no torque is applied to the 
crankset.  The crankset was tested at four angles on the left crank arm and the four 
opposite angles on the right arm.  The inner and outer chain rings were tested at each 
angle.  Each test gave the voltage drop across all four of the strain gage bridges, which 
the electrical team uses to find the torque.  In order to find the torque from the voltage 
readings an algorithm was developed.  The torque can be found using the expression, 

2211 VCVCT ⋅+⋅=  

where T is the torque, C1 and C2 are coefficients, and V1 and V2 are voltages.  Each angle 
has two different coefficients because of the effect of location of the chain.  Since there 
are only two parameters for each angle only two strain gage bridges were needed. 
Referring to Figure 2, bridges 2 and 4 were used for the calculations.  They were chosen 
because of their symmetry about 90 degrees (See graphs below). The coefficients were 
calculated by setting up a system of two equations with two voltages for each equation.  
The system of equations can be solved for the coefficients.  
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Figure 6. Strain versus angle results obtained for all bridges on the outer ring, left pedal 

arm. 
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Figure 7. Strain versus angle results obtained for all bridges on the inner ring, left pedal 

arm. 
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Strain v. Ideal Angle
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Figure 8. Strain versus angle results obtained for all bridges on the outer ring, right pedal 

arm. 
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Figure 9. Strain versus angle results obtained for all bridges on the inner ring, right pedal 

arm. 
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Angle (°) 22.5 67.5 112.5 157.5 202.5 247.5 292.5 337.5 

C2 -5559 -6533 2027 1215 1295 567.6 656.8 -39803 

C4 711.5 -1302 -11251 -5350 -9459 -2920 -1806 11456 

 

• C2 and C4 refer to our bridge two and bridge four respectively 

• The angle is the angle between the right crank arm and the vertical position 
 

Obstacles 

 

Electrical Team Obstacles 

 The main obstacle in this project was balancing strain gages in quarter-bridge 
configuration. Because of the off-balance, the amplifier was saturated at all times. Even 
though the team installed switches with better characteristics, the amplifier was still 
saturated. Due to this, the team changed the measuring circuit from a quarter-bridge to a 
full-bridge configuration. The full-bridge configuration, due to presence of four strain 
gages, performs better because each of those strain gages compensate for the other three 
gages. However, it was still hard to balance the bridge. It turned out that additional long 
wires, to connect measuring bridge with electric circuit, could cause the problem. Thus, 
the team used a new set of strain gages designed for full-bridge configuration, by this we 
have decreased the number of long wires in the circuit.  
 The change from quarter-bridge to full-bridge required a redesign of measuring 
circuitry. This was done because the objectives of the team changed from the previous 
semester. Last semester, the team used 10 switches with 3 fixed resistors. This semester 
only used 4 Wheatstone bridges therefore the resistors were not needed. In the first 
attempt to get a signal from the four measuring bridges through the use of only one 
amplifier, the team used analog switches to disconnect only one signal line of each of 
these bridges. The problem with this was that disconnecting only one signal line, while 
the second line was still connected to amplifier, caused saturation of the amplifier. As a 
result two switches for each bridge were used to disconnect both signal lines from the 
amplifier.  
 When connecting the instrumentation amplifier (op-amp) to an Analog to Digital 
Converter (ADC) the signal was very low close to 0. After reading datasheets for both 
devices it turned out that output impedance of op-amp must be smaller than 2.5kΏ, 
otherwise the ADC will not operate correctly. Thus, a voltage follower, which has output 
impedance smaller than 1kΏ, was implemented between those devices. 
 During initialization, there was an interruption of the microcontroller which 
caused it to not operate correctly. In the errata to the datasheet of this microcontroller the 
team found that a physical bug existed in the internal structure of this microcontroller. To 
alleviate this problem, the team had to set one more register not related to the interrupt. 
The problem was figured out beside the bug in the interrupt system there is a problem 
with port A of this microcontroller. In particular, two of the pins that were being used to 
connect the microcontroller and ANT+, were damaged inside the microcontroller. As a 
result the team had to use a new microcontroller. 
 
Mechanical Team Obstacles   
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 The mechanical aspect of this project encountered several difficulties. The first 
challenge was placing the strain gages in a discreet location without sacrificing their 
effectiveness in measuring strain. Based on previous studies, it was decided that they 
should be placed on the inner surface of the spider arms (which have a C-channel cross-
section) and midway along the length of the arms. Each arm would contain a full 
Wheatstone bridge (4 strain gages) with two gages placed on the flat surface and the 
other two on curved surfaces. This arrangement would minimize damage to the gages and 
keep them hidden without sacrificing the quality of data they obtain. 
 Another obstacle was establishing communication between the Vishay scanner 
and computer software. The software was upgraded in hopes of restoring communication. 
However, the firmware in the device also needed upgrading. The team decided to send 
the instrument back to Vishay for the necessary update which would take roughly two 
weeks.  
 The chosen strain gage arrangement created several challenges. Gluing the gages 
in place became difficult because of their extremely small size and fragile nature. There 
was a tendency for the gages to lift off of the curved surface, in which case they had to be 
re-applied. Soldering introduced another challenge. New soldering tips had to be ordered 
that were fine enough to properly solder wires to the gages. On occasion, the solder 
would break and a wire would have to be soldered again. It was also extremely easy to 
accidentally solder two tabs together, rendering the strain gage useless. The difficulties 
encountered in preparing the crank for testing set the team back several weeks. 
 In addition, the new crank set was not compatible with the existing test apparatus, 
which further delayed testing. One piece required modification to allow it to clamp onto 
the new bottom bracket. A tool also had to be fabricated to thread one side of the crank 
holder. 
 Another set of obstacles was anticipating whether it would be necessary to 
measure crank angle, and predicting the effect of inner and outer chain rings on torque 
measurements. The team decided early on that it was unlikely that the strains measured 
would be independent of crank angle. Thus, the crank angle had to be tracked somehow. 
This obstacle was overcome by creating a carrier ring for reed switches which would be 
triggered by the passing motion of the crank arm. The strains measured could also be a 
function of which chain ring is used. This meant that both inner and outer chain rings had 
to be tested in order to verify their relationship to the strains. 
 Possibly the most challenging obstacle involved creating an algorithm to convert 
the strains to torque and ultimately power measurements. According to previous studies, 
reading the gages as full bridges would create a different relationship than reading the 
gages individually. The team decided to further investigate reading the gages as 
Wheatstone bridges, which would reduce power consumption and therefore improve 
battery life. 
 

Recommendations 

 The following is a list of recommendations given by the team: 

• Research market and provide business case 

• Conduct a Finite Element Analysis on the spider to find optimal locations 
for strain gage placement as well as locating areas unaffected by applied 
loads 
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• It was found that using unshielded wires for the bridge connections 
introduces electrostatic interference into the circuit. For presentation and 
demonstration purposes, shielded connection wires should be used to 
minimize this interference. 

• It is recommended to include additional switches to disconnect any unused 
bridges from the excitation voltage. This will allow the circuit to use less 
battery power. Additionally, the voltage regulator IC has a 'shutdown' pin 
which can be utilized to turn the regulator off, saving additional battery 
power.  

• In order to ensure accurate power values, a method of calibrating should 
be implemented by future teams. This calibration might also implement a 
method for self-balancing bridges.  

• The electrical schematics for this project are located on IGROUPS in 
Protel format.  
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Appendix A 

The schematic shown below was developed by the electrical team. 

  



 20 

Appendix B 

Source code provided by electrical team. 
/************************************ 
IPRO324 BIKE POWER METER CODE 
LAST REVISION: 05/06/2009, Bryan Kaminski 
 
BACKGROUND INFORMATION: ANT+ DATA IS PUT INTO THE BUFFER ARRAY (send_buffer[]) AND THE 
MESSAGE LENGTH VARIABLE IS UPDATED. THEN THE UPDATE FLAG IS CLEARED, AND SMSGRDY 
SIGNAL IS DRIVEN LOW WHICH CAUSES THE HIGH PRIORITY INTERRUPT CODE TO RUN, WHICH SENDS 
OUT THE DATA THROUGH THE SPI PORT TO THE ANT+ CHIP. WHEN THE PIC RECEIVES A  
NOTIFICATION FROM ANT+ TO UPDATE DATA (through the INT0 interrupt pin), THE UPDATE FLAG 
IS SET. WHEN THE UPDATE FLAG IS SET, WE ARE CLEAR TO UPDATE NEW DATA.  
THIS OCCURS IN THE MAIN LOOP, WHICH EXECUTES FOREVER.  
 
ALSO, DATA MUST BE TRANSMITTED LSB FIRST TO ANT+ CHIP, WHICH IS EASILY OVERLOOKED IN THE 
DATASHEET. 
THE HARDWARE SPI PORT ON THE PIC DOES NOT SUPPORT THIS NATIVELY SO THE MACRO/FUNCTION 
flip_byte IS USED TO REVERSE MSB/LSB IN SOFTWARE. 
*/ 
 
#include<p18f4331.h> 
#include<delays.h> 
#include<math.h> 
#include<spi.h> 
 
//SERIAL CONTROL PINS 
/* 
SCLK = PIN 14 
SIN = PIN 15 
SOUT = PIN 16 
SEN = Interrupt on RB0 
*/ 
#define SMSGRDY      LATDbits.LATD7 
#define SRDY      LATDbits.LATD6 
#define SEN       PORTCbits.RC3 
 
#define mask(byte, pos) ((byte) & ~(1<<(pos))) 
#define get_bit(byte, pos) ((byte) & (1<<(pos))) 
 
#define program_bit(byte, pos, low_high)    \ 
        byte = mask(byte, pos);             \ 
        if (low_high)                       \ 
            byte  = byte | (1<<pos); 
 
#define UCHAR unsigned char 
 
UCHAR flip_byte(UCHAR); 
void low_isr(void); 
void high_isr(void); 
void DO_SRDY(void); 
 
//ANT+ Functions 
void ANT_AssignChannel(); 
void ANT_ChannelID(); 
void ANT_OpenChannel(); 
void ANT_SyncReset(); 
void ANT_SetNetworkKey(UCHAR netnumber, UCHAR key0, UCHAR key1, UCHAR key2, UCHAR key3, 
UCHAR key4, UCHAR key5, UCHAR key6, UCHAR key7); 
void ANT_ChannelRF_Frequency(UCHAR channumber, UCHAR frequency); 
 
//GLOBAL VARIABLES 
//SOME VARIABLES MAY BE UNNEEDED HERE 
//OPTIMIZATION COULD BE USED FOR THE FLAG VARIABLES, INSTEAD OF USING ONE BYTE PER FLAG 
UCHAR send_buffer[20]; 
UCHAR rx_buffer[20]; 
UCHAR msg_length = 0; 
UCHAR flag_updateOK = 0x00; 
UCHAR flag_responseWait = 0x00; 
UCHAR counter = 0x00; 
UCHAR counter_mfg = 0x00; 
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UCHAR counter_product = 0x00; 
 
unsigned int inst_power = 0; 
UCHAR inst_power_lsb; 
UCHAR inst_power_msb; 
unsigned int acc_power = 0; 
UCHAR acc_power_lsb; 
UCHAR acc_power_msb; 
 
UCHAR switch_counter = 0x00; 
 
//COEFFICIENTS FOUND BY MECHANICAL TEAM 
unsigned int C1 = 6533; 
unsigned int C2 = 1302; 
 
float bridge_1_voltage = 0; 
float bridge_2_voltage = 0; 
float adc_test = 0; 
 
#pragma code lowvector=0x18 
void lowvector(void) 
{ 
_asm goto low_isr _endasm 
} 
#pragma code 
 
#pragma interruptlow low_isr 
void low_isr(void) 
{ 
 if(INTCONbits.RBIF == 1) 
 { 
  //one of the bits RB4 - RB7 have changed: find which one 
  if(PORTBbits.RB4 == 0) 
  { 
   //GREEN - ZERO POINT 
   PORTAbits.RA3 = 1; 
  // Delay10KTCYx(10); 
  } 
     else if (PORTBbits.RB5 == 0) 
  { 
   PORTAbits.RA2 = 1; 
  // Delay10KTCYx(10); 
  } 
  
 INTCONbits.RBIF = 0; //Clear interrupt flag 
 } 
} 
 
#pragma code highvector=0x08 
void highvectorvector(void) 
{ 
_asm goto high_isr _endasm 
} 
#pragma code 
 
#pragma interruptlow high_isr  
void high_isr(void) 
{ 
 UCHAR result_byte; 
 UCHAR j; 
 
 if(INTCONbits.INT0IF == 1) 
 {  
  
  DO_SRDY(); 
   result_byte = ReadSPI(); 
  if(flip_byte(result_byte) == 0xA5) 
  { 
   flag_updateOK = 0x00; 
   PORTAbits.RA1 = 0; 
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   SMSGRDY = 1; 
   //we are sending to ANT 
   //pulse SRDY as many times as needed to clock all bytes to ANT+ 
     
    for(j=0; j < msg_length; j++) 
    { 
     DO_SRDY(); 
     WriteSPI(send_buffer[j]); 
    } 
    //do we wait for response? 
    if(flag_responseWait == 0x01) 
    { 
     while(SEN); 
     DO_SRDY(); 
     result_byte = ReadSPI(); 
     flag_responseWait = 0x00; 
    } 
  } 
 
  if(flip_byte(result_byte) == 0xA4) 
  { 
   //data from ANT...read and do whatever...? 
   DO_SRDY(); 
   msg_length = flip_byte(ReadSPI()); //# of following data bytes 
   for(j=0; j< msg_length+2; j++) 
   { 
    DO_SRDY(); 
    rx_buffer[j] = flip_byte(ReadSPI()); 
   }  
   
   
  if(rx_buffer[0] == (0x40) && rx_buffer[1] == (0x00) && rx_buffer[2] == 
(0x01) && rx_buffer[3] == (0x03)) 
   { 
    //EVENT_TX msg 
    //set OK to update data flag 
    
    flag_updateOK = 0x01; 
    PORTAbits.RA1 = 1; 
  } 
  } 
 } 
  
 
 INTCONbits.INT0IF = 0; //Clear interrupt flag 
} 
 
void DO_SRDY(void) 
{ 
 SRDY = 1; 
 Delay10TCYx(1); 
 SRDY = 0; 
 Delay10TCYx(2); //Delay > 2.5us 
 SRDY = 1; 
    return; 
} 
 
void ANT_SyncReset() 
{ 
  //ANT+ SYNC 
 SMSGRDY = 1; 
 SRDY = 1; 
 Delay10KTCYx(20);  
 SRDY = 0; 
 Delay1KTCYx(2); 
 SMSGRDY = 0; 
 // delay 45 microsec 
 Delay10TCYx(20);  
 SMSGRDY = 1; 
} 
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void ANT_SetNetworkKey(UCHAR netnumber, UCHAR key0, UCHAR key1, UCHAR key2, UCHAR key3, 
UCHAR key4, UCHAR key5, UCHAR key6, UCHAR key7) 
{ 
 send_buffer[0] = flip_byte(0x09); 
 send_buffer[1] = flip_byte(0x46); 
 send_buffer[2] = flip_byte(netnumber); 
 send_buffer[3] = flip_byte(key0); 
 send_buffer[4] = flip_byte(key1); 
 send_buffer[5] = flip_byte(key2); 
 send_buffer[6] = flip_byte(key3); 
 send_buffer[7] = flip_byte(key4); 
 send_buffer[8] = flip_byte(key5); 
 send_buffer[9] = flip_byte(key6); 
 send_buffer[10] = flip_byte(key7); 
 send_buffer[11] = flip_byte(0xA5 ^ 0x09 ^ 0x46 ^ netnumber ^ key0 ^ 
key1^key2^key3^key4^key5^key6^key7); 
 msg_length = 12; 
 flag_responseWait = 0x01; 
 SMSGRDY = 0;  
} 
 
//REFER TO ANT+ DOCUMENTION FOR INFORMATION ON THESE COMMAND MESSAGES 
void ANT_AssignChannel() 
{ 
 //ASSIGN CHANNEL COMMAND 
 send_buffer[0] = flip_byte(0x03); 
 send_buffer[1] = flip_byte(0x42); 
 send_buffer[2] = flip_byte(0x00); 
 send_buffer[3] = flip_byte(0x10); 
 send_buffer[4] = flip_byte(0x00); 
 send_buffer[5] = flip_byte(0xA5 ^ 0x03 ^ 0x42 ^ 0x00 ^ 0x10 ^ 0x00); 
 msg_length = 6; 
 flag_responseWait = 0x01; 
 SMSGRDY = 0; 
} 
 
void ANT_ChannelID() 
{  
 //CHANNEL ID 
 send_buffer[0] = flip_byte(0x05); 
 send_buffer[1] = flip_byte(0x51); 
 send_buffer[2] = 0x00; //channel number 
 
` send_buffer[3] = flip_byte(0x01); //\\\\\\\\\\\\\\\\\\\\ DEVICE ID 
 send_buffer[4] = flip_byte(0x00); /// - little endian 
 
 send_buffer[5] = flip_byte(0x0B); // pairing bit + device type ID  
 send_buffer[6] = flip_byte(0x05);  // transmission type 
 send_buffer[7] = flip_byte(0xA5^ 0x05 ^ 0x51 ^0x00 ^0x01 ^0x00 ^0x0B^0x05); 
 msg_length = 8; 
 flag_responseWait = 0x01; 
 SMSGRDY = 0; 
}  
 
void ANT_OpenChannel() 
{ 
 //OPEN CHANNEL 
 send_buffer[0] = flip_byte(0x01); 
 send_buffer[1] = flip_byte(0x4B); 
 send_buffer[2] = flip_byte(0x00); 
 send_buffer[3] = flip_byte(0xA5 ^ 0x01 ^ 0x4B ^ 0x00); 
 msg_length = 4; 
 flag_responseWait = 0x01; 
 SMSGRDY = 0; 
} 
 
void ANT_ChannelRF_Frequency(UCHAR channumber, UCHAR frequency) 
{ 
 send_buffer[0] = flip_byte(0x02); 
 send_buffer[1] = flip_byte(0x45); 
 send_buffer[2] = flip_byte(channumber); 
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 send_buffer[3] = flip_byte(frequency); 
 send_buffer[4] = flip_byte(0xA5 ^0x02 ^0x45 ^channumber ^ frequency); 
 msg_length = 5; 
 flag_responseWait = 0x01; 
 SMSGRDY = 0; 
} 
 
UCHAR flip_byte(UCHAR byte) 
{ 
    UCHAR i, j; 
    UCHAR bit_i, bit_j; 
 
    for(i=0, j=7; i<j; i++, j--) 
    { 
        bit_i = get_bit(byte, i); 
        bit_j = get_bit(byte, j); 
        program_bit(byte, i, bit_j); 
        program_bit(byte, j, bit_i); 
    } 
 
    return (byte); 
} 
 
void main() 
{ 
 //CONFIGURE DIRECTION BITS 
 TRISA = 0x00; 
 PORTA = 0x00; 
 TRISB = 0x00; 
 PORTB = 0x00; 
 TRISD = 0x00; 
 
 TRISCbits.TRISC3 = 1; //SEN 
 TRISDbits.TRISD2 = 1; //SERIAL DATA IN 
 TRISDbits.TRISD3 = 1; //SERIAL CLOCK IN 
 TRISDbits.TRISD1 = 0; //SERIAL DATA OUT 
 TRISCbits.TRISC6 = 1; //SS pin 
 TRISCbits.TRISC5 = 1; 
 
 TRISBbits.TRISB5 = 1; 
 TRISBbits.TRISB4 = 1; 
 
 TRISAbits.TRISA0 = 1; 
 TRISAbits.TRISA2 = 0; 
 TRISAbits.TRISA3 = 0; 
 
 ANSEL0  = 0x01;   //RA0 Analog Input   
 ADCON0 = 0b00000001; //single-shot conversion on ADC group A 
 ADCON1 = 0b00001110; //Use AVdd and AVss for references, 1110 for A/D pin select 
 ADCON2 = 0b10100110; //R-justified, 20TAD aquisition time, TAD=64*TOSC 
 
 //INTERRUPT CONFIGURATION 
 RCONbits.IPEN = 1; 
 INTCONbits.INT0IF = 0; 
 INTCON = 0b11011000; 
 INTCON2 = 0b00000000; 
 
 //WE USE SS PIN, BUT IT IS ALWAYS GROUNDED 
 //OPEN SPI PORT 
 OpenSPI(SLV_SSON, MODE_11, SMPMID);   
 
 ANT_SyncReset(); 
 //SET UP FOR BIKE POWER METER CONFIGURATION - THIS INFORMATION IS FOUND IN ANT+ 
DEVICE PROFILES DATASHEET 
 ANT_SetNetworkKey(0, 0xB9, 0xA5, 0x21, 0xFB, 0xBD, 0x72, 0xC3, 0x45); 
 //THE ORDER OF OPERATIONS HERE IS IMPORTANT 
 ANT_AssignChannel(); 
` ANT_ChannelID(); 
 ANT_ChannelRF_Frequency(0, 57); 
 ANT_OpenChannel(); 
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 while(1)  
 {  
  //SWITCH 1 ON THEN TAKE A/D CONVERSION 
  PORTB = 0xFE; 
  ADCON0bits.GO_DONE=1;  //Start A/D conversion process 
  while(ADCON0bits.GO_DONE){} //wait for process to finish 
  bridge_1_voltage = (.0029)*((unsigned int)ADRESH*256 + (unsigned 
int)ADRESL); 
  Delay10KTCYx(50); 
  //SWITCH 2 ON THEN TAKE A/D CONVERSION 
  PORTB = 0xFD; 
  ADCON0bits.GO_DONE=1;  //Start A/D conversion process 
  while(ADCON0bits.GO_DONE){} //wait for process to finish 
  bridge_2_voltage = (.0029)*((unsigned int)ADRESH*256 + (unsigned 
int)ADRESL); 
  Delay10KTCYx(50); 
    
  //CALCULATE VOLTAGE DIFFERENCE FROM OFFSET FOR EACH BRIDGE 
  bridge_1_voltage = fabs(1.5 - bridge_1_voltage); 
  bridge_2_voltage = fabs(1.5 - bridge_2_voltage); 
 
  //ROUGH ESTIMATE TO CALCULATE HP FROM TORQUE; WILL NEED TO BE REDONE 
  adc_test = .1*(C1*bridge_1_voltage + C2*bridge_2_voltage); 
 
  if(flag_updateOK == 0x01) 
  {  
   counter_mfg++; 
  
   //RESET DISPLAY LEDS (DEMONSTRATION ONLY) 
   PORTAbits.RA2=0; 
   PORTAbits.RA3=0; 
 
   //PER ANT DOCUMENTATION, MFG AND PRODUCT DATA PAGES MUST BE 
INTERLEAVED 121,242 MSGS RESPECTIVELY 
   if(counter_mfg == 121) 
   { 
    send_buffer[0] = flip_byte(0x09); 
    send_buffer[1] = flip_byte(0x4E); 
    send_buffer[2] = flip_byte(0x00); 
    //start data packet 
    send_buffer[3] = flip_byte(0x50); 
    send_buffer[4] = flip_byte(0x00); 
    send_buffer[5] = flip_byte(0x00); 
    send_buffer[6] = flip_byte(0x01); 
    send_buffer[7] = flip_byte(0x01); 
    send_buffer[8] = flip_byte(0x00); 
    send_buffer[9] = flip_byte(0x01); 
    send_buffer[10] = flip_byte(0x00); 
    //end data packet 
    send_buffer[11] = flip_byte(0xA5 ^ 0x09 ^ 0x4E ^ 
0x00^0x50^0x00^0x00^0x01^0x01^0x00^0x01^0x00); 
    msg_length = 12; 
    flag_updateOK = 0x00; 
    SMSGRDY = 0; 
    ///Send mfg page   
   } 
    
   if(counter_mfg =242) 
   { 
    counter_mfg = 0x00; 
    send_buffer[0] = flip_byte(0x09); 
    send_buffer[1] = flip_byte(0x4E); 
    send_buffer[2] = flip_byte(0x00); 
    //start data packet 
    send_buffer[3] = flip_byte(0x51); 
    send_buffer[4] = flip_byte(0x00); 
    send_buffer[5] = flip_byte(0x00); 
    send_buffer[6] = flip_byte(0x02); 
    send_buffer[7] = flip_byte(0xFF); 
    send_buffer[8] = flip_byte(0xFF); 
    send_buffer[9] = flip_byte(0xFF); 
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    send_buffer[10] = flip_byte(0xFF); 
    //end data packet 
    send_buffer[11] = flip_byte(0xA5 ^ 0x09 ^ 0x4E ^ 0x00 ^ 
0x51^0x00^0x00^0x02^0xFF^0xFF^0xFF^0xFF); 
    msg_length = 12; 
    flag_updateOK = 0x00; 
    SMSGRDY = 0; 
    //Send prod page 
   } 
   if(counter_mfg != 121 || counter_mfg != 242) 
   { 
    counter++; 
    //RPM = 45 
    //JANKY FUDGE FACTOR; JUST FOR DEMO 
    adc_test = adc_test - 37; 
     
     
    acc_power = acc_power + adc_test;     
 
    acc_power_lsb = acc_power%256; 
    acc_power_msb = acc_power/256;  
    inst_power_lsb = (unsigned int)adc_test%256; 
    inst_power_msb = (unsigned int)adc_test/256;    
 
    send_buffer[0] = flip_byte(0x09); 
    send_buffer[1] = flip_byte(0x4E); 
    send_buffer[2] = flip_byte(0x00); 
    //start data packet 
    send_buffer[3] = flip_byte(0x10); 
    send_buffer[4] = flip_byte(counter); 
    send_buffer[5] = flip_byte(0xFF); 
    send_buffer[6] = flip_byte(0x3C); 
    send_buffer[7] = flip_byte(acc_power_lsb); 
    send_buffer[8] = flip_byte(acc_power_msb); 
    send_buffer[9] = flip_byte(inst_power_lsb); 
    send_buffer[10] = flip_byte(inst_power_msb); 
    //end data packet 
    send_buffer[11] = flip_byte(0xA5 ^ 0x09 ^ 0x4E ^ 0x00 ^ 
0x10 ^ counter ^ 0xFF ^0x3C ^acc_power_lsb ^acc_power_msb ^inst_power_lsb 
^inst_power_msb); 
    msg_length = 12; 
    flag_updateOK = 0x00; 
    SMSGRDY = 0; 
   }  
  }  
 } 
} 
 

 


