PROJECT PLAN

IPRO 317

Silver Nanoparticles Indicators of Thermal History

2/6/2009

Contents

1.	Team Information	. 3
2.	Team Purpose and Objectives	. 5
3.	Background	. 6
4.	Team Values Statement	. 6
5.	Methodology/Brainstorm/Work Breakdown Structure	. 7
6.	Expected Results	. 8
7.	Project Budget	. 9
8.	Schedule of Tasks and Milestone Events	. 9
9.	Individual Team Member Assignments	11
10.	Designation of Roles	12
App	endix	14

1. Team Information

A. Team roster, team member strengths and team member expectations

Name	Year/Major	Contact Info	Specialty/Strengths	Expectations
Michael Schillaci	5 th year CHBE	mschilla@iit.edu	Previous lab experience, (school and job labs)	Gain better overall understanding of nanoparticles and their practical uses
Marisa De Nicolo	4 th yr MSE	<u>mdenico@iit.edu</u> 630-346-7479	Material lab experience, CS experiance	To gain a better understanding of the processing and uses of nanoparticles
Evan Larkin	4 th yr CS	<u>elarkin@iit.edu</u>	Software development, linux systems, Windows systems computer networking.	The chance to apply my field (software engineering) to a real problem.
Katherine Hammes	4 th yr ChE	<u>khammes@gmail.</u> <u>com</u> 913-908-0503	HYSIS and Matlab experience; have worked in a physics and a organic chemistry lab	To learn how to synthesize nanoparticles and to covert a batch process to a continuous flow process
Jennifer Peavler	4 th yr CHBE	<u>jpeavler@iit.edu</u> (773)791-2412	Bionanotechnology. Lab experience. Good at designing powerpoint presentations.	Would like to arrive at a good microreactor design.
Amanda Wicker	4 th yr CHBE	<u>awicker@iit.edu</u> 320-247-2388	prior lab experience with nanoparticles	Optimize nanorod synthesis, design microreactor
Christian Arnoux	4 th yr CHBE	<u>carnoux@iit.edu</u> 847-840-0963	Chemical Engineering, General lab experience	To obtain a better understanding of nanorod synthesis while moving forward with microreactor design
Russell Ucci	4 th yr CHBE	<u>rucci@iit.edu</u> 630-291-8190	HYSIS, Matlab, general lab experience, reactor design	Greater knowledge of the intricacies of nano-rod and reactor design
Grant Justice	4 th year ME /MS	gjustice@iit.edu 312-523-6163	ME/MS lab experience, general understanding of microreactor fabrication	Learn more about the specifics of microreactor design and fabrication

Riju Konwar	4 th Year CHE, BME, MMAE	rkonwar@iit.edu	Computational Fluid Mechanics, Bio- Reactors, Reaction Kinetics, MatLab, Solidworks and Engineering Contrast	To gain working knowledge of nanoparticles and hopefully to be able to design a functional engineering process.
Mark Pyciak	Mark 4 year or		Meticulous, well- organized and has experience in lab	At the very least I expect to gain an understanding of the specific problems associated with adapting the nanorod batch process to a continuous process.
Farouk Yaker	4 th year CHBE	<u>fyaker@gmail.co</u> <u>m</u> 773-286-7514	Proficient in Aspen, Icarus, Hysys. Lab experience.	To develop a good working model of the continuous process and win on IPRO day.
Muhamma d Darwish	4 th year CHBE	<u>mdarwish03@gm</u> <u>ail.com</u> 8473610391	Bio and CHBE lab experience	Design and come up with a good project which improves this process
Jason Petsod	3rd yr physics	jpetsod@iit.edu 773-407-7024	physics, web sites/programming, LaTeX, spelling and grammar zealot	learn about AgNPs including some lab work
Malisa Ismail	3 rd yr CHBE	<u>mismail1@iit.edu</u> 313-213-1763	Report format and editing. General lab experience, enforcing safety in the lab © (PPE!)	To understand nanoparticle synthesis and its applications. To assist in designing flow synthesis process for Ag nanorods.
Remi Adejinle	3 rd yr CHBE	<u>radejinl@iit.edu</u> 3127304212	General Chemistry lab experience. Can make power point slides	Hoping to gain an understanding of nanoparticles and help arrive at a better design suitable for large scale production
Ryan Kyle	3 rd Year ChE	<u>rkyle@iit.edu</u> (312) 231-2834	Chemistry/Physics lab experience	To learn about the synthesis of nanoparticles
Kunle Apampa	3 rd year ChE	<u>aapampa@gmail.</u> <u>com</u> (312) 841.2455	Researching & Lab experience	Expand my knowledge in nanotechnology.
Aram	2 nd yr physics	aapyan@iit.edu	Physics, Math,	Learn about the

Apyan		847-688-3762	programming, lab and research experience	behavior of nanoparticles
Brent Bijonowsk i	2 nd yr CHBE	bbijonow@iit.edu 312.835.6804	CS background, and lab experience	Learn about the production and implementation of silver nanoparticles
Paul Adamczyk	2 nd yr CHBE	<u>padamcz1@iit.ed</u> <u>u</u> 773-616-9409	General lab exp.	Achieve solid understanding of silver np's.
Joseph Muchna	2 nd Year MSE	<u>jmuchna@iit.edu</u> 708-341-5424	Material Lab experience	Learn more about nanoparticles
Mathew Bednarz	2 nd year CHE	<u>mbednarz@iit.ed</u> <u>u</u> 630.220.1740	Some lab experience, previous research on nanowires	Learn about production of particles on the nano scale, gain experience with synthesis of particles
Amaka Mbaegbu	2 nd year CHBE	<u>ambaegbu@iit.ed</u> <u>u</u> (312)-498-4448	CS Background and Some Lab experience	Learn about the production and implementation of nanoparticles

- B. Team Identity
 - Name: Quick Silver 47
 - Motto: Hi Ho Silver!
 - Logo:

2. Team Purpose and Objectives

- A. The primary purpose of IPRO 317 is to prove the merit of using silver nanorods as a thermal history indicator. The extended purpose of IPRO 317 is to convert the production of silver nanorods from a batch process to a continuous flow process.
- B. To accomplish this our team will:
 - Gain deeper understanding of batch process.
 - Research continuous flow processes with an emphasis on microreactors

• Design and simulate a continuous flow process for production of silver nanorods with the aid of a computer simulation software.

3. Background

- A. There is no sponsor for IPRO 317; however, we will be working closely with Professor Perez-Luna, and we will be using his laboratory facilities
- B. Some difficulties that the user will be facing are the need to rely heavily upon instruments in order to obtain results and each batch process may produce different result based on small fluctuations.
- C. Possible technologies and instruments that are involved in this project include nanotechnology, microreactors, a spectrophotometer, and a dark film microscope.
- D. Silver nanorods are typically produced by a batch process with limited reproducibility. Currently research groups are investigating the possibility of a continuous flow process.
- E. A few ethical issues considered within this IPRO are the negative environmental and health issues, the ensured safety of lab personnel, and upholding the ACS regulations for the safe handling and disposal of all chemical species utilized within the laboratory.
- F. Success of converting the production of silver nanorods from a batch to a continuous flow process will save time and money.
- G. The IPRO 317 team will focus on reproducing silver nanorods with the same aspect ratio through a batch process and thusly proving the merit of using silver nanorods as thermal history indicators. The next step will be to convert this process to a continuous flow process through the employment of a series of continuously stirred microreactors.
- H. Thus far the attempt to find articles concerning the conversion of the production of silver nanorods from a batch process to a continuous flow process has been met with limited success. Several articles have been found indicating the feasibility of using silver nanorods as thermal history indicators.

4. Team Values Statement

A. Desired Behaviors

Every team member is expected to:

• Be respectful and curious to others.

- Be responsible, including fulfilling assigned tasks in a timely manner and arriving prepared and on time for meetings.
- Employ ethically and environmentally conscious practices.
- Maintain open communication lines with teammates through multiple mediums, including iGroups, email, and meetings.

B. Resolution of Problems

The following actions will be taken to address problems:

- Problems are to be communicated directly by the party concerned to the appropriate person, whether that person be another student, the team leader, or the IPRO adviser
- If the issue still remains, the problem will be presented to the entire IPRO team
- The resolution will be voted upon by the entire team

5. Methodology/Brainstorm/Work Breakdown Structure

- A. The primary problem that IPRO 317 faces is to prove the merit of using silver nanorods as a thermal history indicator. A further problem that IPRO 317 wishes to address is the conversion of the production of silver nanorods from a batch process to a continuous flow process.
- B. Our group plans to do the following to address this task:
 - Literature Research concerning the production of silver nanorods
 - Literature Research about processes employing the use of microreactors
 - Make silver nanorods in the lab through batch process to discover information about kinetics and thermodynamics of reactions.
 - Develop preliminary designs for a microreactor using information from experiments
 - Use computer software to optimize design
 - Build and test microreactor
- C. Potential solutions will be tested by
 - Analyzing lab results
 - Designing and simulating microreactor with the aid of computer simulation software such as HYSYS
- D. The task of documentation will be relegated to two individuals.

- One individual will be in charge of collecting, organizing, and compiling research regarding the production of AGNRs, information about microreactors, and any other literature research that arises.
- This individual will also be in charge of collecting, organizing and compiling any experimental data obtained from the lab.
 - This individual will work closely with the team leader to ensure that progress is being made.
- E. The following actions will be taken in order to analyze results.
 - Results will be collected and organized by the team archivist. These results will be analyzed by the Junior and Senior members of the group.
 - The consensus of the analysis will be brought to the advising professor with the intent of gaining insight and direction.
- F. The IPRO deliverable reports will be generated by a team whose main focus is to coordinate the events and results of the team with the IPRO office deliverables.
 - This team will work closely with the rest of the team in order to ensure that deliverables are generated in a timely manner.
 - The team leader will also work closely with the IPRO deliverable team in order to ensure optimal results.

6. Expected Results

- A. The overall goals of IPRO 317 are to prove the feasibility of using silver nanorods as thermal indicators and to convert the production of silver nanorods from a batch process to a continuous flow process. For the scope of this semester, our team can realistically expect:
 - Extensive research on current silver nanorod production techniques.
 - Extensive research on microreactors or any other reactors which will enable the conversion between a batch process and a continuous flow process.
 - Several experiments involving batch production of silver nanorods.
 - A preliminary design and simulation of a microreactor.
 - A bench operation with a microreactor.
- B. Our team expects to learn about the kinetic and thermodynamics of the laboratory batch process of making silver nanorods. This information is expected to be used when designing our microreactor.
- C. Silver nanorods are becoming more widely used in industry. The continuous flow production of silver nanorods could be patented and sold to a number of companies employing the use of silver nanorods or any number of companies that currently produce silver nanorods.
- D. Overall, the potential outcomes of this semester of IPRO 317 include successfully producing several batches of silver nanorods, designing a

microreactor, simulating a microreactor, and optimizing the microreactor design.

- E. Mainly the expected result of this semester of IPRO 317 is to create an optimal microreactor design with the intent of converting the production of silver nanorods from a batch process to a continuous flow process.
- F. The biggest challenge for this IPRO will be to convert laboratory results into meaningful data that will be incorporated into the design of a microreactor.
- G. It is the intent of this IPRO team to develop and simulate an optimal design for a microreactor that will convert the production of silver nanorods from a batch process to a continuous flow process. Ideally, this design model will be used to aid future IPROs in actually building a microreactor.

7. Project Budget

The itemized quote for the following items is attached as an appendage to this report.

A. The following items are required for the production of silver nanorods:

- CTAB
- APTES
- H_2SO_4
- HCl
- AuCl₄

8. Schedule of Tasks and Milestone Events

A. The following table lists significant project tasks

	U	Completion	Hours	# Team
Milestones/Activities	Start Date	Date	Needed	Members
Definition of Project			5	24
Objectives	27-Jan-09	30-Jan-09		
Gathering			44	9
Research/Background	27-Jan-09	19-Feb-09		
Lab Synthesis of			160	15
Silver Nanorods	10-Feb-09	1-May-09		
Analysis of First Lab			10	15
Synthesis*	12-Feb-09	17-Feb-09		
Design of			52	9
Microreactor	19-Mar-09	16-Apr-09		
Construction of			6	5
Microreactor	16-Apr-09	16-Apr-09		
Trial Runs of			30	15
Microreactor	16-Apr-09	23-Apr-09		
Preparation for IPRO			20	24
Day	23-Apr-09	30-Apr-09		

*Several batches of silver nanorods will be produced in the laboratory throughout the semester. Analysis and dates of analysis of lab results will be dependent upon the successful production of silver nanorods.

Milestones/Activities	Due Date	Hours	# Members
Project Plan	6-Feb-09	10	4
Midterm Review	2-Mar-09	10	4
Abstract/Brochure	27-Apr-09	10	4
Poster	27-Apr-09	10	4
Website/Meeting Minutes	27-Apr-09	160	3
Final Oral Presentation	29-Apr-09	30	15
Final Report	8-May-09	50	8
CD/TOC	11-May-09	4	2

B. The following table lists all the tasks pertaining to IPRO deliverables

C. To complete the aforementioned tasks and milestones the following skills or educational background will be required:

- Technical skills involved in operating a dark film microscope, a spectrophotometer, and other essential laboratory equipment
- Laboratory safety procedures
- Familiarity with engineering software
- A basic understanding of chemical reaction engineering
- D. An estimate of hours needed and number of team members needed to complete each task are given in the previous tables. The total estimated number of man-hours to complete the aforementioned tasks is 611 hours.
- E. Allotting 10 hours for slack time brings the total estimation of hours to 621 hours.

9. Individual Team Member Assignments

Name	Tasks
	The primary purpose of IPRO 317 is
	to prove the merit of using silver
	nanorods as a thermal history
IPRO 317	indicator. The extended purpose of
	IPRO 317 is to convert the production
	of silver nanorods from a batch
	process to a continuous flow process.
	Oversee all tasks, run meetings at which
Konwar, Riju – Team Leader	the entire IPRO is present, be the link between the professor and subgroups
	Compile research, collect lab results,
De Nicolo, Marisa - Archivist	keep everyone on task, take meeting
	minutes, organize iGroups folders
	Literature research pertaining to the
	IPRO; future subdivisons may include
Subgroup: Research	economics, microreactors, future
	applications, alternate synthetic
	procedures, etc
Arnoux Christian Group Loader	Manage and delegate tasks to the other members of the group and direct
Arnoux, Christian – Group Leader	research efforts

Adamczyk, Paul					
Apampa, Ayokunle					
Apyan, Aram	Dutifully carry out the research assigned				
Justice, Grant G	by the group leader and present and/or				
Larkin, Evan	post useful findings				
Muchna, Joseph					
Petsod, Jason					
Subgroup: Lab	Synthesize nanorods in a wet laboratory following previously published batch procedures				
Peavler, Jennifer – Group Leader	Oversee and direct laboratory work, communicating what is to be done and organize group into shifts with assigned tasks				
Adejinle, Remi					
Bednarz, Mathew					
Bijonowski, Brent					
Darwish, Muhammad					
Hammes, Katherine	Actively perticipate in Job work and				
Ismail, Malisa	Actively participate in lab work and perform any additional research that				
Konwar, Riju	may present itself as necessary over				
Mbaegbu, Amaka	time				
Pyciak, Mark					
Schillaci, Michael					
Ucci, Russel					
Wicker, Amanda					
Yaker, Farouk					

10. Designation of Roles

A. Meeting Roles

- **Minute Taker:** records decisions made during meetings, including task assignments or changes under consideration. Marisa De Nicolo
- Agenda Maker: creates an agenda for each team meeting, which provides structure to the meetings and offers a productive environment.

– Riju Konwar

- **Time Keeper:** is responsible for making sure meetings go according to the agenda. Riju Konwar
- B. Status Roles

- Weekly timesheet collector/summarizer: responsible for collecting weekly timesheets from each member of the team and updating everyone with a summary report. Marisa De Nicolo
- Master schedule maker: responsible for collecting schedules from all the team members and developing a master schedule, which tells the team when members are available and how to contact them. – Farouk Yaker
- **iGroups:** responsible for organizing the team's iGroups account and ensuring that it is used properly. Marisa De Nicolo

Appendix

PROFORMA INVOICE/QUOTATION

SOLD-TO: LLINOIS INST OF TECHNOLOGY ACCOUNTS PAYABLE 201MB 3300 S FEDERAL CHICAGO L 60616

SHIP-TO: LLINOIS INSTITUTE OF TECHNOLOGY 10 W 32ND ST CHICAGO L 80919

CONTACT: JENNIFER TELEPHONE: 7737912412 FAX: NOT AVAILABLE

Т

INQUIRIES TO: SIGMA-ALDRICH INC 3050 SPRUCE ST SAINT LOUIS MO 63103 US

Phone: 800-325-3010 Fax: 800-325-5052

т

PROFORMA INV/QUOTATION	1#
21093611	
DATE	
02/04/2009	
VALID UNTIL	
05/04/2009	
SOLD TO CUSTOMER NUMB	ER
49440651	
CUSTOMER REFERENCE NUM	BER
QUOTE DKB	
INCO TERMS	
FCA/SHIPPING POINT	
PAGE	
Page 1 of 2	

LINE	MATERIAL NUMBER	DESCRIPTION	QUANTITY	UOM	UNIT PRICE	EXTENDED PRICE	PROPOSED ROUTE
001	440140-100ML	3-AMNOPROPYLTRIETHOXYSILANE, 99% HAZ	1.00	EA	47.20	47.20	FEDEX GROUND Shipped From MLWAUKEE
002	G4022-1G	GOLD CHLORIDE TRIHYDRATE ACS REAGENT HAZ UN3260	1.00	EA	76.80	76.80	FEDEX GROUND Shipped From SAINT LOUIS
003	320331-2.5L	HYDROCHLORIC ACID, 37%, A.C.S. REAGENT (POLV-COATED BOTTLES) HAZ UN 1789	1.00	EA	85.90	86.90	FEDEX GROUND
004	84720-2 <i>5</i> L	SULFURIC ACID 95-97%, PEBOTTLE HAZ UN 1830	1.00	EA	74.10	74.10	Shipped From MLWAUKEE

The SIGMA-ALDRICH Family

∯SIGMA

SIGMA **#Fluka QALDRICH EXTENSION** SUPELCO

PROFORMA INVOICE/QUOTATION

SOLD-TO: LLINOIS INST OF TECHNOLOGY ACCOUNTS PAYABLE 201MB 3300 S FEDERAL CHICAGO L 60616

SHIP-TO: LLINOIS INSTITUTE OF TECHNOLOGY 10 W 32ND ST CHICAGO L 60516

CONTACT: JENNIFER TELEPHONE: 7737912412 FAX: NOT AVAILABLE

INQUIRIES TO: SIGMA-ALDRICH INC 3050 SPRUCE ST SAINT LOUIS MO 63103 US

Phone: 800-325-3010 Fax: 800-325-5052

PROFORMA INV/QUOTATION #						
21093611						
DATE						
02/04/2009						
VALID UNTIL						
05/04/2009						
SOLD TO CUSTOMER NUMBER						
49440651						
CUSTOMER REFERENCE NUMBER						
QUOTE DKB						
INCO TERMS						
FCA/SHIPPING POINT						
PAGE						
Page 2 of 2						

LINE	MATERIAL NUMBER	DESCRIPTION	QUANTITY	UOM	UNIT PRICE	EXTENDED PRICE	PROPOSED ROUTE
							Shipped From Allentown
005	H9151-100G	HEXAD ECYLTR METHYLAMMONIUM BROMIDE, SIGMAULTRA	1.00	EA	88.70	88.70	FEDEX GROUND
		NON-HAZ UN3077					Shipped From SAINT LOUIS
							Items Total 373.70 USD
							Trans/Handling 124.70 USD Total Due 498.40 USD
							10tal Due 498,40 USD
			DBROOKSH				

The SIGMA-ALDRICH Samily

SIGMA **#Fluka: Q ALDRICH SCHEDER SUPELCO** We are Committed to the Success of our Customers through Science, Technology and Strvice.