fuel cell basics

- step 1: hydrogen enters the gas flow channels
- step 2: at the anode, the hydrogen molecules are broken into protons and electrons with help from the catalyst. the pro tons flow through the anode while electrons are repelled. this movement creates an electric current when the anode and cathode are connected to a load
- step 3: the hydrogen then mixes with oxygen flowing through a seperate gas flow channel, giving off water as the only emission

PBI fuel cells

- has a higher operating temperature (160-180 C) allowing for faster reaction rates and less catalyst poisoning by carbon monoxide (CO)
- provides a longer fuel cell life

PVA / strong acid PEI / strong acid chemical structures of acid base complex membranes

general information

The fuel cell, in contrast to the internal combustion engine, works on the principle of converting chemical energy into electrical energy, which can then be used to run a motor, generating mechanical energy. This is far more efficient than burning the fuel to produce thermal energy (heat), which is then converted to mechanical energy. This conversion (thermal to mechanical energy) is known to have limited efficiency, even in the ideal case.

Hydrogen gas flows into the fuel cell at the anode (negative electrode), where it separates into electrons and protons with the help of a catalyst. The protons then flow through the membrane, while the electrons are repelled and must flow out through the anode. On the other side, air or oxygen is supplied to the cathode. This oxygen reacts with the protons coming through the membrane and electrons off the cathode (positive electrode) to create water by the air stream. If the anode and cathode are connected to a load, such as a motor, an electric current will flow, powering the device.

The typical catalyst for the reaction in the fuel cell is platinum, which is extremely expensive. Platinum is already used in vehicles, but the amount of platinum needed for a fuel cell is many times greater. This has been the main hurdle for fuel cell technology. Although alternatives for platinum are being sought, none have yet been found, although some ways of reducing the amount of platinum necessary have been found somewhat effective.

Another hurdle is the storage of hydrogen, which can be resolved by producing hydrogen from hydrocarbon fuels, particularly natural gas (methane). There are several ways, including catalytic reforming and steam reforming. The reforming process requires a series of reactions that must take place at specific temperatures; most at temperatures higher than the operation temperature of the fuel cell. The reforming process also results in impurities that must be filtered out of the gas stream before entering the fuel cell, or they will render ineffective the platinum catalyst. Ironically, one of the ways of getting rid of the contaminant carbon monoxide is to use platinum as a catalyst to preferential oxidation, which essentially burns most of the carbon monoxide and a little hydrogen in the stream.

aircraft design

cesna skycatcher

- medium size gives enough space to fit the fuel cell and all components into previous passenger space
- the fuel cell replaces the cockpit
- electronics and supporting systems fit into the storage areas
- fuel and engine spaces are used for their original purpose

Methonol reformer PBI fuel cell

Engine

cost analysis

Unmanned aircraft vehicles (UAVs) and unmanned submersible vehicles were compared, with the conclusion that UAVs were the most likely candidate for a fuel cell-powered vehicle due to current functioning designs. Commercial automobiles were ruled out because a fuel cell engine and associated reforming processes are too heavy and not space efficient. Unmanned submersible vehicles were dismissed because storage of hydrogen and oxygen would be too difficult under the high pressures encountered in the deep sea. Unmanned aircraft vehicles were decided upon as the best option because of space available in aircrafts versus submersibles.

Several UAV designs were considered, with the limitation of a maximum weight of 500 lbs. First we looked at models on the market developed by large corporations such as Boeing, Northrop Grumman, AeroVironment and General Atomics. Each was determined to be too small for the required amount of power. Next, we investigated model airplanes, which are advantageous because their power and size requirements are easily accessible. However, replacing the battery with a fuel cell system was deemed unlikely due to size limitations.

calculations

Cockpit Dimensions	S	119		112	176	cm	
Current Density		0.4	A/cm^2				
Cell Voltage		0.6	V/MEA				
Bipolar Plate Thick	ness	0.1	cm				
Total MEA Thicknes	SS	0.4	cm				
Reduction in MEA A	Area	1	cm	n			
Flight Time		4	hours				
Temperature of Cel	l	160	°C				
Electricity Needed f	or						
Hydrolysis of 1 kg	OT H2	55	KVVN				
Fuel Cell Efficiency		50	% L/ka		t 10 000 pai		
nyurogen Density		27	L/Kg	a	it 10,000 psi		
<u>Stacking</u>							
i	# of MEAs	MEA Area (cm^2)	Volt	<u>age (V)</u>	<u>Current (A)</u>	Power (kW)	
	2530	247		1518	98.8	150.00	
Motor Req	uirements			750	135	101.25	
Farradav's Law Cal	culations -	- Amount of Hvdroae	n				
	Q (C)	F (C/mol)	M (ka/ı	<u>nol)</u>	z	<u>m (ka)</u>	-
	1422720	96485	0.00	201588	2	0.01486258	
Power Calculations	- Amount	of Hydrogen					
	kWh	<u>m (kg)</u>					
	600	21.82					
Flow Rate							
Hydrogen							
Moles		Mdot(kg/s)	Vdot (m ³	/s)	<u>Mdot (kg/h)</u>	<u>Vdot_(m^3/h)</u>	
	19921.82	0.002788889	0.	000094	10.04	0.3384	
Ovvaen		Volumes Found Using					
Oxygen	Moles	Mass (kg)	Volume (m	n^ <u>3</u>)	Mdot (ka/h)	V dot (m^3/h)	
	9960 91	319.32		628 80	0 022	0 044	
	0000.01	010.02		020.00	79.83	157.20	
					10.00	101.20	
Air		Calculated Using HYS	SYS		21	% O2 by Volume	
	Moles	Mass (kg)	Volum	Volume (m^3) Mdot (<u>Vdot (m^3/h)</u>	
	0.00	0.00	2	2994.29	0.00	0.00	
					342.60	748.30	
<u>Catalyst</u>							
Platinum - Anode			Catalyst Lo	bading	0.4	mg/cm^2	
Mass for 1	MEA (kg)	<u>Mass for All (kg)</u>	<u>\$</u>				
(0.0000988	0.25		9950.0	00		
Carbon Fiber - Anode			•				
Mass for 1		Mass for All (Kg)	\overline{p}	0.75			
Diatinum Cathada	1.0000988	0.25	Catalyst L	U.75	0.6 ma/cm/2		
Fialinum - Cathode More for 1		Mass for All (kg)	Catalyst L(Jaung	0.6	mg/cm/2	
		<u>IVIASS IOLAIL (KQ)</u> 0.38	$\overline{\mathbf{D}}$	1/025	25.00		
Carbon Fiber - Catho	nde	0.30		14920			
Mass for 1	MFA (ka)	Mass for All (kg)	\$				
1012331011	0.0001482	0.38	ψ	1 13			
· · · · · · · · · · · · · · · · · · ·		0.00					

skylark UAV

t34 mentor

cessna skycatcher

our process

Finally, it was decided the most feasible choice was converting a two-man airplane into a UAV.

Hass for 1 MEA (kg) 0.00008892 PBI Loading 0.36 mg/s 0.0001482 O.36 mg/s 0.818 Cathode PBI Loading 0.0001482 0.39 66.18 Assuming 10% of Mass.for All(kg) 0.0001482 0.39 113.64 Assuming 10% of Mass 0.001482 0.39 113.64 Assuming 10% of Mass 0.001482 0.39 113.64 Assuming 10% of Mass 0.00 0.00 80.00 q/cm^3 Price PBI Cost/Mass 0.00 16.47 0.13 222.31 750 Sb/s Mass (kg) Ean 16.47 0.13 222.31 750 Sb/s Mass (kg) Ean Weight (g) 60 750 Sb/s Total Energy 1212202 kJ/h 14 Wim*2 K For steam to air Mass (kg) Ean Weight (g) 60 750 Sb/s Total Energy 1212202 kJ/h 14 Wim*2 K For steam to air Log Mean Temperature 338.58 K Sb/s 751.48 Needed Heat Transfer Coefficient 14 W/m*2 K For steam to air Log Mean Temperature 338.58 K 751.48 Needed Heat Transfer Coefficient 445902616 m*2 Total Mass Camponent Mass.f(kg) 271.48 PBI 0.00 221.48								
Volume (cm^3) Mass of 1 Plate (kg) Mass for All (kg) \$ 16.47 0.13 222.31 750 \$5/k' Stainless Steel Core - Nitrided Au plated Al \$35/ Mass (kg) Ean Weight (g) 37.61 0.5 (less than this) 60 Fuel Cell Heat Efficiency 0.49 Total Energy 1212202 kJ/h 60 Heat Transfer Coefficient 14 W/m² K For steam to air Log Mean Temperature 338.58 K 58 Needed Heat Transfer Area 464902616 m²2 465 km²2 10tal Mass 271.48 Catalyst/Support 8.35 271.48 Bipolar Plates 222.31 Fan Total Cost Bipolar Plates 222.31 Fan 0.60 Bipolar Plates 222.31 Fan 0.06 Bipolar Plates 222.31 Fan 0.06 Bipolar Plates 222.31 Fan 0.06 Bipolar Plates 222.31 Fan 0.00 Bigolar Plates	/cm^2 /cm^2	0.36 mg/cm^2 0.6 mg/cm^2 4 g/cm^3 Price	PBI Loading \$ PBI Loading \$ 1	<u>Mass for All (kg)</u> 0.23 <u>Mass for All (kg)</u> 0.38 0 1.98 0.00 Density	<u>s for 1 MEA (kg)</u> 0.00008892 <u>s for 1 MEA (kg)</u> 0.0001482 of Nafion Cost <u>Plates</u>	PBL Anode Mass Cathode Mass Mass PBI Cost PBI Cost PBI Cost/Mass Metal Bipolar P		
Mass (kg) Elow Rate (ft^3/min) Weight (g) 37.61 0.5 (less than this) 60 Fuel Cell Heat Efficiency 0.49 Total Energy 1212202 kJ/h Heat Heat Transfer Coefficient 14 W/m^2 K For steam to air Log Mean Temperature 338.58 K For steam to air Needed Heat Transfer Area 464902616 m^2 465 km^2 Total Mass Component Mass (kg) Total Mass (kg) Hydrogen 40.16 271.48 Catalyst/Support 8.35 PBI 0.60 Bipolar Plates 222.31 Fan 0.06 Hydrogen 765 Catalyst/Support 0.00 PBI 0.00 0.00 PBI 0.00	kW j/kW	<u>\$</u> 750 \$5/kW \$35/kW	Mass for All (k 222	Mass of 1 Plate (kg) 0.13 Au plated Al	<u>Volume (cm^3)</u> 16.47 Core - Nitrided	ل Stainless Steel C <u>Fan</u>		
465 km^2 Iotal Mass Component Mass (kg) Total Mass (kg) Hydrogen 40.16 271.48 Catalyst/Support 8.35 271.48 PBI 0.60 0.60 Bipolar Plates 222.31 222.31 Fan 0.06 0.06 Iotal Cost Hydrogen 765 Catalyst/Support 0.00 PBI 0.00	15	For steam to air	kJ/h kJ/h W/m^2 K K m^2	(less than this) 0.49 1212202 620884 14 338.58 464902616	0.5 Efficiency Total Energy Heat Energy Isfer Coefficient an Temperature at Transfer Area	Fuel Cell Heat Heat Trans Log Mear Needed Heat	37.61	
Total CostTotal Cost (\$)Hydrogen765Catalyst/Support0.00PBI0.00		<u>⁻otal Mass (kg)</u> 271.48	km^2	465 <u>Mass (kg)</u> 40.16 8.35 0.60 222.31 0.06	<u>Component</u> port	Total Mass Hydrogen Catalyst/Suppo PBI Bipolar Plates Fan		
Bipolar Plates 750.00 Fan 15.00 Motor d = 14.7 in I = 35.63 in 1				<u>Total Cost (\$)</u> 765 0.00 0.00 750.00 15.00	oort S	Total Cost Hydrogen Catalyst/Suppo PBI Bipolar Plates Fan Motor d = 14.7 in I = 35.63 in		

- Fuel Cells Green Power Los Alamos National Labratory
- www.cessna.com
- · "PBI-based polymer electrolyte membranes fuel cells Temperature effects on cell performance and catalyst stability." Electrochimica Acta 52 (2007): 3910-920. Elsiver Science Direct. 15 Feb. 2009
- Zhang, Jianlu et al. "High temperature PEM fuel cells." Journal of Power Sources 1602006 872-891 Web.20 Feb 2009
- · "Hydrogen / Oxygen Refueling Infrastructure for Fuel Cell Vehicles." Web.24 Mar 2009. <http://www.anuvu.com>

acknowledgements

we would like to thank:

- our advisor, professor Ramani
- the MAE 436 (screech owl) design team
- our great team for all their hard work and dedication