

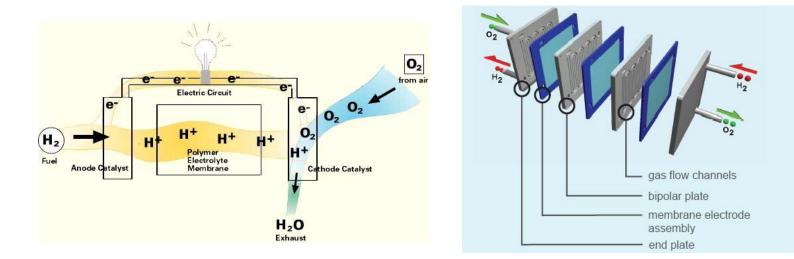
IPRO 318: Fuel Cells for the Future

Business or Bust?

•Research Objectives

- Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research
- Conclusion
- Acknowledgement
- Questions

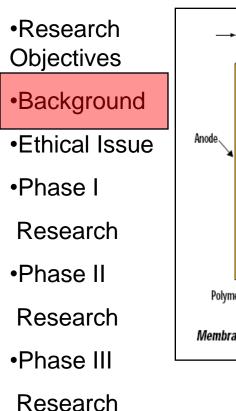
- Survey different types and study fundamental working principles of Polymer Electrolyte Membrane (PEM) fuel cells, and evaluate the commercial feasibility of fuel cell powered automobile
- Select and study in depth one specific type of PEM fuel cell, and propose possible utilization in military applications
 - Select an application and create a design incorporating a PEM fuel cell system and perform a cost and benefit analysis using engineering design principles

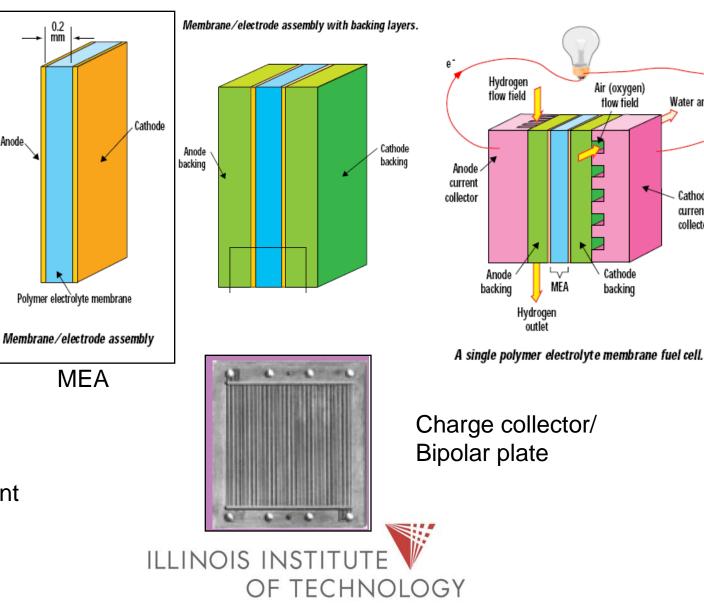


•Research Objectives

- •Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research
- Conclusion
- Acknowledgement
- Questions

- •Fuel cell- electrochemical conversion device that produces electricity through the oxidation of fuel
- •Polymer Electrolyte Membrane(PEM)- specific type of fuel cell with solid polymer membrane




Water and air

Cathode

current collector

- Conclusion
- Acknowledgement
- •Questions

- •Research Objectives
- •Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research
- Conclusion
- Acknowledgement
- Questions

Ethical Issues

- Improper citation of published work
- •Not listening to others' ideas
- •Not working as a team
- •Overlooking safety or environmental aspects
- Unequal share of work

Phase I Research

- ✤Tasks
- Methodology
- ✤Results
- ✤Updated objective

- Study different fuel types and reforming reactions
- Study impurities and their impact on cell performance, particularly catalyst poisoning
- Perform cost analysis on fuel cell and fuels and compare with internal combustion engine for automobile application

Phase I	
Research	

✤Tasks

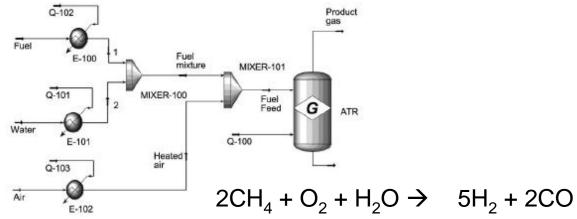
Methodology

✤Results

✤Updated objective

- Cost Analysis Team:
 - Cost of fuel cell
 - Cost of combustion engine
 - Cost of gasoline
 - Production cost of hydrogen from CH₄
 - Cost of JP-5, JP-8 jet fuels
- Fuel Analysis Team:
 - Storage and transportation of hydrogen
 - Water Gas Shift reaction (WGS)
 - Preferential oxidation,
 - Catalytic reforming, JP-5, JP-8,
 - Steam Methane Reforming (SMR),
 - Desalination and Electrolysis for Hydrogen production
- Impurities Analysis Team:
 - Membrane failure
 - Impurities' effects on anode, cathode, polymer electrolyte, and catalyst

I P R O Interprof	GRAM ipro • 3182					
	Cost (112 kW):					
Phase I Research	Internal c	ombustion engine $=$ \$3360).			
∻ Tasks	Fuel cell	= \$200/kW = \$22400				
↔Methodology	<u>Co</u>	st \$H ₂ /gal from:	Hydrogen Yields from:			
Results	Methane	\$1.98/gal	Methane 75%			
✤Updated objective	Gasoline	\$1.89/gal	Gasoline 85%			
	JP-8	\$2.34 to \$3.13/gal	JP-8 13.81% Hydrogen			
	JP-5	\$2.94/gal	Hydrocarbons C9-C16 Energy density: 2000-3700 Wh/kg			
			JP-5 14.1% Hydrogen			


Phase I Research

Tasks

Methodology

✤Results

✤Updated objective <u>Autothermal (ATR) Fuel Reforming</u>: vaporized hydrocarbon fuel, air and water (steam) are fed at controlled conditions to the reactor to produce the reformate gas mixture, major inlet mixture CH_4 , H_2O , O_2 , and N_2 , and outlet major components H_2 , H_2O , N_2 , CO_2 , and CO

Catalytic Reforming: converts low octane hydrocarbons into highoctane products, producing hydrogen as byproduct <u>Steam Methane Reforming (SMR):</u> Methane reacting with steam at 750-800°C (1380-1470°F) to produce a synthesis gas (syngas), a mixture primarily made up of hydrogen (H2) and carbon monoxide (CO), which then undergoes Water Gas shift reaction:

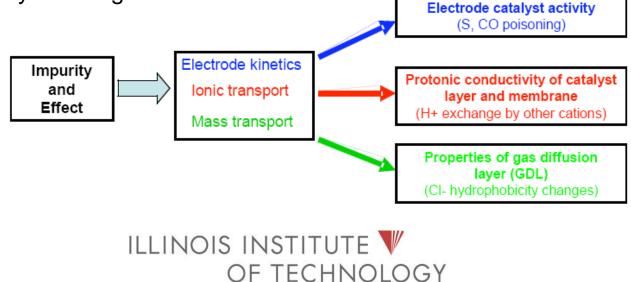
 $CH4 + H2O \rightarrow CO + 3 H2$ CO + H2O \rightarrow CO2 + H2


Phase I Research

Tasks

Methodology

✤Results


✤Updated objective

•The catalyst platinum (Pt) works best for both the oxidation and reduction half reactions, and therefore is used on both the anode and cathode.

•The multi-step electron reduction process at the cathode is more than 100 times slower than the H_2 oxidation half reaction

•CO is the most important impurity, it will poison the Pt catalyst by blocking its active sites

Phase I Research

- Tasks
- Methodology
- ✤Results

Updated objective

Fuel cell powered automobile deemed commercially unfeasible for mass market, shifting attention to specialized application in military:

- Researched feasibility of using fuel cell in Unmanned Underwater Vehicles (UUV's)
- Researched feasibility of using a fuel cell to power Unmanned Aerial Vehicle (UAV)
- Researched the phosphoric acid-doped polybenzimidazole membrane (PBI) fuel cell, a high temperature PEM fuel cell

Phase II

Research

Methodology

✤Results

Updated objective

- •Unmanned Underwater Vehicles (UUV) Team:
 - -UUV background
 - -Fuels used in UUV's

-Advantages and disadvantages of using fuel cells in UUV's

- •Unmanned Aerial Vehicle (UAV) Team:
 - -History of UAV's
 - -Existing UAV designs and specifications
 - -Functions and classifications of UAV's
- •Polybenzimidazole membrane (PBI) fuel cell Team:

-Fuel cell materials: carbon backing and support layers, bipolar plates

-Synthesis of PBI/phosphoric acid membrane, catalyst

-PBI fuel cell's susceptibility to impurities and poisoning

Phase II Research

Methodology

Results

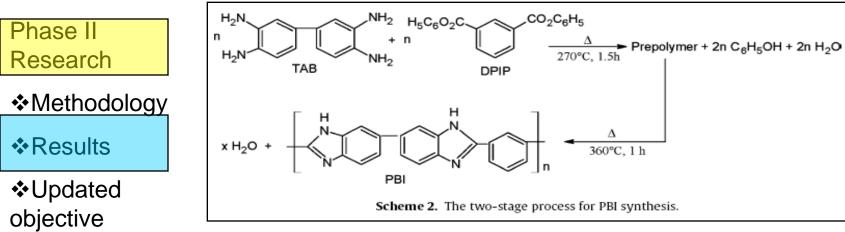
✤Updated objective

- Uses of Unmanned submersibles:
 - Underwater mine warfare
 - Intelligence, surveillance and reconnaissance
 - Undersea environmental sensing and mapping
 - Trailing of enemy submarines
- Most submersibles powered by rechargeable batteries
 - Advantages of using fuel cells in UUV's:
 - Extended range (higher energy density)
 - Silent operation
 - Rapid recharge (refuel reactant tanks)
 - Potential problems:
 - Hydrogen and oxygen storage
 - On-board reforming

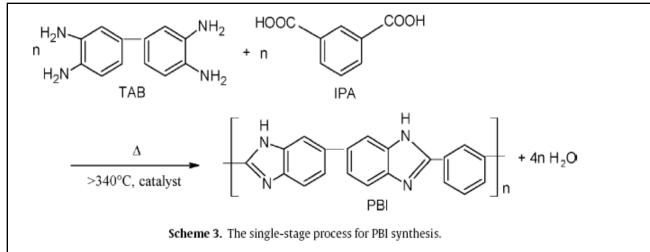
Phase II Research

Methodology

Results


✤Updated objective

- •Unmanned Aerial Vehicle (UAV) application: surveillance
- •Record flight time: 96 hours continuous flight
 - Eventual goal is 5 years in the air.
- •Maximum altitude: 100,000 ft
 - Different designs based on altitude and purpose
- •Maximum speed: variable
 - Depends on size and payload
- •Power source depends on size:
 - Small UAV's: battery
 - Larger UAV's: alternating (internal combustion) engine
 - Very large UAV's: jet engine



• PBI refers to aromatic heterocylic polymers containing benzimidazole units formed from combinations of tetraamines and diacids.

360°C, 1 h

• Specifically, it refers to the commercial product under the trademark Celazole[®], poly 2,2-*m*-(phenylene)-5,5-bibenzimidazole

Phase II Research

✤Results

✤Updated

objective

Methodology

•Advantages of PBI membrane compared to Nafion®

- No humidification necessary
- •Operates at 160 to 200°C
 - •Nafion® based fuel cells operate below 100°C to maintain humidification
- Less cooling
- •Tolerance for CO is increased from 30ppm to 3%
 - •Reformed hydrogen can be used directly from a methanol reformer without additional cleanup

•Eliminates 48% drop in voltage output from CO contamination

Bipolar plates serve as flow fields and current collectors

- •Graphite bipolar plate has good corrosion resistance
- •Metal bipolar plate has higher conductivity and lower cost

Phase II	
Research	

Methodology

✤Results

Updated objective

UAV selected as the application for fuel cell design due to easier access to atmospheric oxygen

- Survey the available plane designs and select an appropriate model to retrofit with fuel cell system
- Design fuel cell stack, delivery and storage system
- Design aerodynamically balanced placement for fuel cell, fuel, and motor.
- Design electronic system to work with the fuel
 cell

Phase III Research

Methodology

✤Results

Fuel Cell Design Team

 Design the fuel cell system to power the selected plane and system to store, transport, and reform the fuel

Transformers Team

• Design the power system to supply power to the motor and other accessories

Phase III Research

Methodology

Results

- Application to senior design project unsuccessful due to the small plane size
- Weight and volume limitations inhibited commercial and model aircraft use
- Most feasible choice was converting a twoman airplane into a UAV based on Cessna Skycatcher requiring 100 kW power with a weight limit of 227 kg for the fuel cell design

- Chose an electric motor that provides equivalent power
 - DMI 180B selected
- Methodology

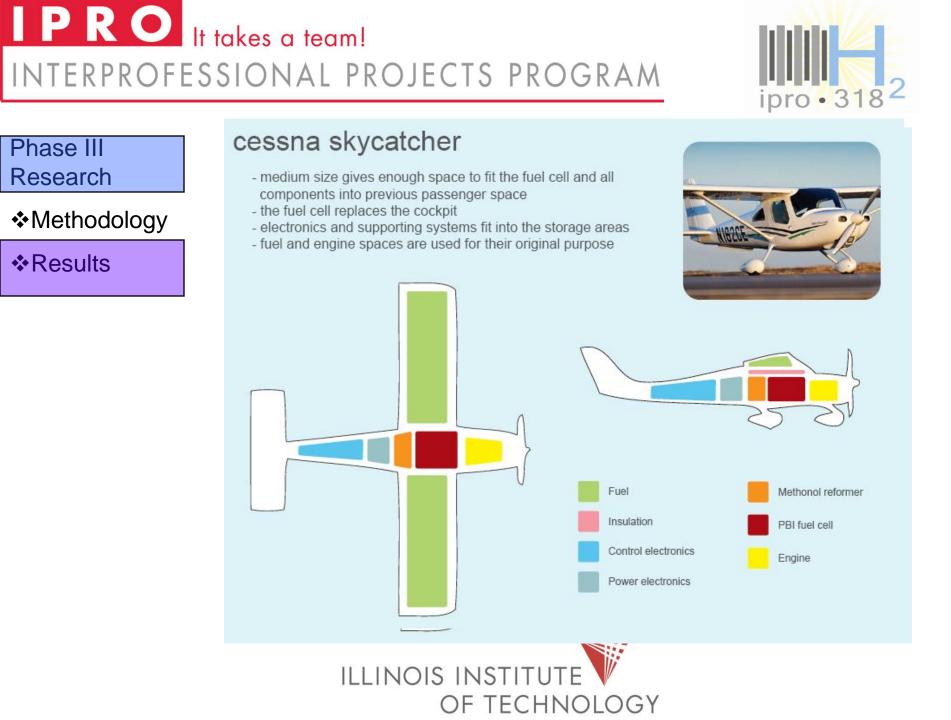
Results

Phase III

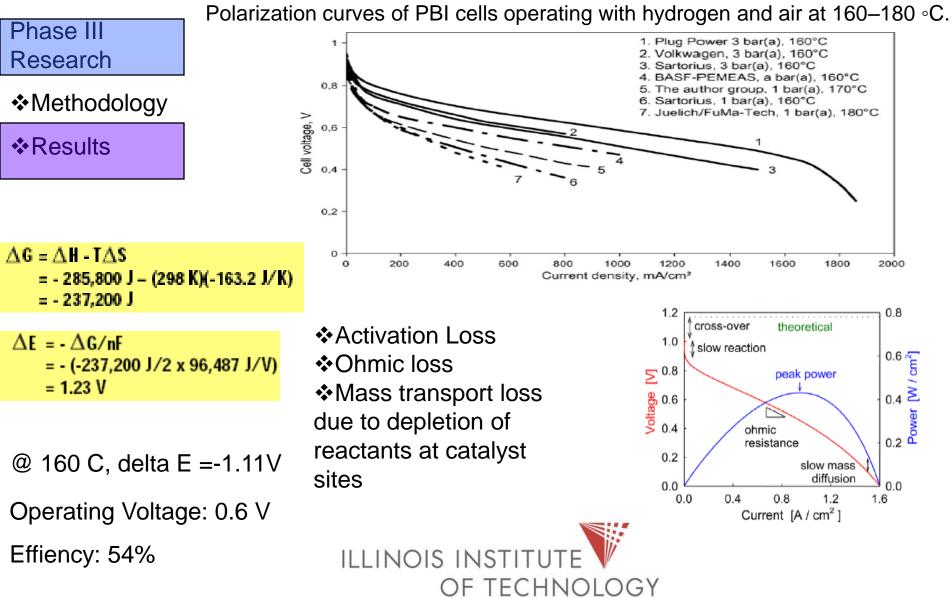
Research

- Calculate the power, voltage and current requirements for the motor
 - Power required
 - Voltage required 750 V
 - Current required 135 A
 - Shaft Speed 2,800 rpm
- Transformer and invertors
 necessary to get the correct
 voltage and current to the motor

Single Engine Skycatcher Engine



DMI 180B Motor



100 kW

Phase III

Research

✤Results

Methodology

160.0

57.16

Using compressed H_2 .

vout Hydrogen Stream Fuel Cell stack mix out using H2 MIX-101 Air Energy Streams Energy Energy output from fuel cell output lout from ΚW Heat Flow -336.7 fuel cell Material Streams Hydrogen Stream Air mix out vout lout 1.0000 1.0000 0.0000 Vapour Fraction 1.0000 1.0000 160.0 160.0 171.1 Temperature 160.0 кРа Pressure 6.895e+004 57.16 57.16 57.16 Molar Flow 4.980 11.87 16.85 14.36 0.0000 kgmole/h 10.04 342.6 352.6 352.6 0.0000 Mass Flow kg/h 0.5397 Liquid Volume Flow m3/h 0.1437 0.3960 0.4159 0.0000 KW 20.03 -316.7 Heat Flow 6.876 13.16 0.0000

	Cockpit Dimensions	119	112	176 cm
Phase III	Current Density	0.4 A/cm^2		
Research	Cell Voltage	0.6 V/MEA		
Nesearch	Bipolar Plate Thickness	0.1 cm		
	Total MEA Thickness	0.4 cm		
Methodology	Reduction in MEA Area	1 cm		
	Flight Time	4 hours		
Results	Temperature of Cell	160 °C		
	Electricity Needed for			
	Hydrolysis of 1 kg of H2	55 kWh		
	Fuel Cell Efficiency	50 %		
	Hydrogen Density	27 L/kg	at 10,000) psi

Stacking <u># of MEAs</u> 2530 <i>Motor Requirements</i>	<u>MEA Area (cm^2)</u> 247	<u>Voltage (V)</u> 1518 <i>750</i>	<u>Current (A)</u> 98.8 <i>135</i>	<u>Power (kW)</u> 150.00 <i>101.25</i>		
Farraday's Law Calculations - A Q (C) 1422720	Amount of Hydrogen <u>F (C/mol)</u> 96485	<u>M (kg/mol)</u> 0.00201588	<u>z</u> 2	<u>m (kg)</u> 0.01486258	<u>Total Mass (kg)</u>	37.61
$m = (\frac{It}{F})(\frac{M}{z})$						

Phase III Research

Methodology

✤Results

Total Mass		
Component	<u>Mass (kg)</u>	<u>Total Mass (kg)</u>
Hydrogen	40.16	271.48
Catalyst/Support	8.35	
PBI	0.60	
Bipolar Plates	222.31	
Fan	0.06	

Total Cost		
		Total Cost (\$)
Hydrogen	750	26574
Catalyst/Support	24876.88	
PBI	181.82	
Bipolar Plates	750.00	
Fan	15.00	

Vout2

Lout2

Vout2

1.0000

mix hp

0.0000

Lout2

0.0000

160.0

57.16

0.0000

0.0000

0.0000

0.0000

Air 2

1.0000

160.0

57.16

24.23

699.0

0.8080

26.85

Fuel Cell stack for MeOH

C

reforming Gas out

reforming liq out

reforming liq out

0.0000

MeOH

mix hp

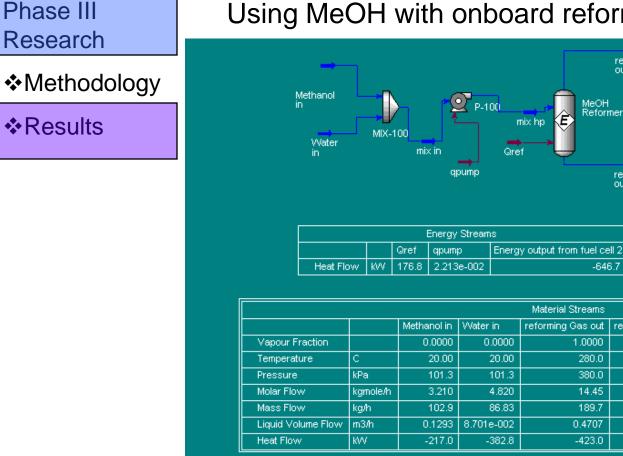
Reformer

-646.7

Material Streams

reforming Gas out

1.0000


Air 2

Energy output

from fuel cell

mix in

0.0000

Using MeOH with onboard reforming:

Phase III	Stacking					
Research	# of MEAs	MEA Area (cm^2)	Voltage (V)	Current (A)	Power (kW)	
	5088	247	3052.8	98.8	301.62	
Methodology	Motor Requirements		750	135	101.25	
 ♦Results	Farraday's Law Calculation	le la			(1	T-(-1 M (1)
	<u>Q(C)</u>	<u>F (C/mol)</u>	<u>M (kg/mol)</u>	Z	<u>m (kg)</u>	Total Mass (kg)
	1422720	96485	0.00201588	2	0.0148626	75.62

<u>Component</u>	<u>Mass (kg)</u>
Methanol	411.6
Water	347.32
Catalyst	9.61
PBI	1.21
Bipolar Plates	727.49
Methanol Reformer	1139.74
Pump	77.11
Total	2714.08

Component	<u>\$</u>
Methanol	82.42
Catalyst	50862.36
PBI	365.60
Bipolar Plates	94255.20
Methanol reformer	92,500
Pump	16400.00
Total	254465.58

•Research Objectives

- Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research

•Conclusion

- Acknowledgement
- Questions

- Two PBI fuel cell systems were developed to power Cessna Skycatcher using:
 - Compressed hydrogen
 - Onboard reforming of methanol
- Calculations showed the weight and space required for onboard reforming exceeded the design limitations
- Compressed hydrogen fuel cell system has more potential
 - -Future work is needed to resolve the heat dissipation issue

- •Research Objectives
- Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research
- Conclusion
- •Acknowledgement
- Questions

Many Thanks To:

- IPRO 318 advisor, professor Vijay Ramani
- MMAE 436 (Screech Owl) design team
- Every member of the team for all their hard work and dedication

- •Research Objectives
- Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research
- Conclusion
- Acknowledgement

•Questions

© 20th Century Fox

- •Research Objectives
- Background
- •Ethical Issue
- •Phase I
- Research
- •Phase II
- Research
- •Phase III
- Research
- Conclusion
- Acknowledgement
- Questions

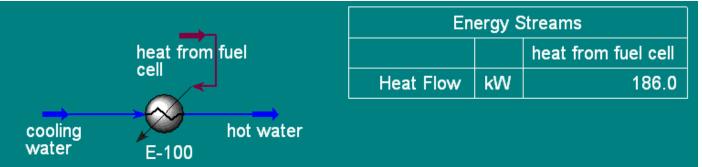
IPRO	It takes a team!	
	ESSIONAL PROJECTS PROGRAM	3182
 Research Objectives Background Ethical Issue 	Fuel Cell HeatCompressed H2Efficiency0.49Total Energy1212202 kJ/hHeat Energy620884 kJ/hHeat Transfer Coefficient14 W/m^2 KLog Mean Temperature338.58 KNeeded Heat Transfer Area464902616 m^2465 km^2	• 510
•Phase I	Fuel Cell HeatMeOH reformingEfficiency0.49Actual Process Enthalpy4211 kJ/kgmol	
Research	Theoretical Process Enthalpy8632.55 kJ/kgmolMolar Flow Rate33.93 kgmol/h	
•Phase II	Total Energy292902.42 kJ/hHeat Energy150023.19 kJ/h	
Research	Graphite Bipolar PlatesDensity1.82 g/cm^3PriceVolume (cm^3)Mass of 1 Plate (kg)Mass for All (kg)\$78.5460.14727.4994255.2Me	0.075 \$/cm^2
•Phase III	Metel Pineler Distan	mpressed H2
Research	16.47 0.13 222.31 750 \$5/kW Stair	nless Steel Core - Nitrided lated Al
 Conclusion 		

- Acknowledgement
- •Questions

•Research Objectives

- •Background
- •Ethical Issue
- •Phase I

Research


•Phase II

Research

•Phase III

Research

- Conclusion
- Acknowledgement
- Questions

Material Streams					
cooling water hot water					
Vapour Fraction		0.0000	1.0000		
Temperature	С	20.00	1756		
Pressure	kPa	101.3	101.3		
Molar Flow	kgmole/h	5.551	5.551		
Mass Flow	kg/h	100.0	100.0		
Liquid Volume Flow	m3/h	0.1002	0.1002		
Heat Flow	kW	-440.9	-254.9		

