# IPRO 302 – Analysis of Water Recovery from Power Plants for Recycling

Final Presentation December 5, 2008

**Presented by:** 

**Don Dornbusch** 

Wai Kit Ong

Sithambara Kuhan

**Dave Malon** 

Sargent & Lundy





#### Sargent & Lundy

#### Sponsor Contacts: Ajay Jayaprakash Dave Stopek



#### Problem

- Analyze different methods of removing water from flue gas after coal combustion (750 MW plant)
- Why? Limited water resources in various locations around the country that require water for pollution control







## **Objectives**

- Analyze and Cost different methods for removing water
- Determine:
  - Rate of H<sub>2</sub>O consumption from FGD
  - Amount of H<sub>2</sub>O produced for each technology
  - Cost of  $H_20$  produced (\$/1000gal  $H_20$ )
  - Quality of water recovered



Don Faculty Chmiewlewski Advisors

Myron Gottlieb



# **Project Planning**

- Establishing common goals
  - Quality of Work
  - Ethical Research
- Team Code of Conduct
  - Honest, Reliable, Respectful
- Project Schedule
  - Dates for Achievements
  - Allow for Adjustments



# **Related Projects**

- Various Separation
   Techniques
  - Desiccant Siemens
  - Spray Towers (Used in FGD)
  - Heat Exchanger US
     Department of Energy (DOE)







- Advantages
  - Simple maintenance
  - Low risk of fouling and corrosion
  - Low pressure drop

### **Design Parameters**

| Part                  | Parameter                            |  |                 |
|-----------------------|--------------------------------------|--|-----------------|
| Tower                 | Height                               |  | 7 meters        |
|                       | Diameter                             |  | 2 meters        |
|                       | Primary Material for<br>Construction |  | Carbon Steel    |
| Nozzles               | Туре                                 |  | Flat cone       |
|                       | Droplet diameter 7                   |  | 750 microns     |
|                       | Operating flow rate                  |  | 9000 gpm/nozzle |
|                       | Operating pressure                   |  | 470 psi         |
| Pump                  | Туре                                 |  | Condensate pump |
|                       | Total flow rate                      |  | 90000 gpm       |
|                       | Power requirements                   |  | 8995 HP         |
| Cost                  |                                      |  |                 |
| Capital Cost          |                                      |  | \$218,000       |
| Annual Operating Cost |                                      |  | \$3,273,400     |



#### **Obstacles**

- Wide array of variables
- Lack of literature to compare assumptions
- Use of spray systems for pollution control processes rather than cooling
- Low tolerance to pressure drops





### Indirect Contact Team



#### Compact Shell-and-Tube Heat Exchanger



 $h_i A_i \approx h_o A_o$ 

h – Heat transfer coefficient
A – Heat transfer area
i – Tube-side
o – Shell-side

- Large surface-to-volume ratio
- Increased contact with flue gas
- •Largest average temperature difference
- •Minimized thermal stress
- •Overall cost, weight, volume savings



## Design



### **Design Parameters**

|                              | Shel                 | I-side  | Tube-side  |            |  |  |  |
|------------------------------|----------------------|---------|------------|------------|--|--|--|
| Fluid                        | Flue                 | Gas     | Water      |            |  |  |  |
| Total Flow [kg/h]            | 4,01                 | 7,500   | 20,124,000 |            |  |  |  |
| Vapor (in/out) [kg/h]        | 4,017,500 3,750,000  |         | 0          | 0          |  |  |  |
| Liquid (in/out) [kg/h]       | 0                    | 267,500 | 20,124,000 | 20,124,000 |  |  |  |
| Temperature (in/out)<br>[°F] | 130                  | 100     | 85         | 100        |  |  |  |
| Heat Duty [kJ/h]             | 7,235,000            |         |            |            |  |  |  |
| Area [m <sup>2</sup> ]       | 26,832               |         |            |            |  |  |  |
| Capital Cost [US\$]          | 836,939 <sup>1</sup> |         |            |            |  |  |  |
| Annual Operating             | F                    | an      | Pump       |            |  |  |  |
| Cost [US\$]                  | 2,64                 | 9,004   | 415,955    |            |  |  |  |

<sup>1</sup> Corrected 2008 value – CE index 746.4

### That's 5 Football Fields!





### **Design Parameters**

|                              | Shel                 | I-side  | Tube-side  |            |  |  |  |
|------------------------------|----------------------|---------|------------|------------|--|--|--|
| Fluid                        | Flue                 | Gas     | Water      |            |  |  |  |
| Total Flow [kg/h]            | 4,01                 | 7,500   | 20,124,000 |            |  |  |  |
| Vapor (in/out) [kg/h]        | 4,017,500 3,750,000  |         | 0          | 0          |  |  |  |
| Liquid (in/out) [kg/h]       | 0                    | 267,500 | 20,124,000 | 20,124,000 |  |  |  |
| Temperature (in/out)<br>[°F] | 130                  | 100     | 85         | 100        |  |  |  |
| Heat Duty [kJ/h]             | 7,235,000            |         |            |            |  |  |  |
| Area [m <sup>2</sup> ]       | 26,832               |         |            |            |  |  |  |
| Capital Cost [US\$]          | 836,939 <sup>1</sup> |         |            |            |  |  |  |
| Annual Operating             | F                    | an      | Pump       |            |  |  |  |
| Cost [US\$]                  | 2,64                 | 9,004   | 415,955    |            |  |  |  |

<sup>1</sup> Corrected 2008 value – CE index 746.4



#### Obstacles

- Heat exchanger information not readily available
- Determining actual overall heat transfer coefficient
- Sizing of heat exchanger
  - Tubes
    - Diameter, thickness, length
  - Fins
    - Thickness, height, number of fins per inch



### Results and Recommendations

#### Typical municipal water prices in Canada and other countries (per cubic metre)





### **Economics**

| Cost                                   | Direct Contact (US\$) | Indirect Contact<br>(US\$) |  |  |  |  |  |
|----------------------------------------|-----------------------|----------------------------|--|--|--|--|--|
| Capital Cost                           | 218,000               | 836,939                    |  |  |  |  |  |
| Operational Cost                       | 3,273,400             | 3,064,959                  |  |  |  |  |  |
| Annualized Cost                        | 3,299,500             | 3,165,392                  |  |  |  |  |  |
| Cost per 1000 Gallons $H_2O$ Recovered | 5.28                  | 5.10                       |  |  |  |  |  |

## **Quality of Water Recovered**

Temperature = 85 °F

Pressure = 1 atm

| Component      | Mass Flows (kg/h) | Mass Percent (%) |  |  |  |  |  |
|----------------|-------------------|------------------|--|--|--|--|--|
| Water          | 268,000           | 99.67            |  |  |  |  |  |
| Oxygen         | 854.72            | 0.32             |  |  |  |  |  |
| Carbon Dioxide | 28.144            | 0.01             |  |  |  |  |  |
| Nitrogen       | 2.8981            | 0.00             |  |  |  |  |  |
| Sulfur Dioxide | 0.1782            | 0.00             |  |  |  |  |  |
| Chlorine       | 0.00265           | 0.00             |  |  |  |  |  |
| Argon          | 0.000462          | 0.00             |  |  |  |  |  |
| Tota           | 268,406           | 100              |  |  |  |  |  |



### **Ethical Issues**

- Concerns
  - Environmental impact
  - Economics & Resource management
  - Societal impact
  - Sponsor's needs
- Responsibilities
  - Intra-group
  - Inter-communal

## Conclusions

#### Was enough water produced for FGD? YES

- Was the price competitive? NO Feasible?
- Only under restrictive circumstances
   (ex. scarce resources)



#### Recommendations

- Analyze other technologies
- Only apply one of our methods when resources are scarce.

#### IPRO 302 – Analysis of Water Recovery from Power Plants for Recycling

### **Questions/Comments?**



#### References

- <sup>1</sup> U.S. Department of Energy. <u>http://www.energy.gov/energysources/coal.htm</u> . *Last Reviewed: 10/19/2007.*
- Principles of Flue Gas Water Recovery Systems. © Siemens AG 2005.
- Recovery of Water from Boiler Flue Gas. US Department of Energy. ©11/2006.
- Seider, Warren D., J. D. Seader, and Daniel R. Lewin. <u>Product and Process Design Principles : Synthesis,</u> <u>Analysis, and Evaluation</u>. 2nd ed. San Francisco: Pfeiffer, 2003.
- Singh, Jasbir. <u>Heat Transfer Fluids and Systems for</u> <u>Process and Energy Applications</u>. Danbury: Marcel Dekker Incorporated, 1985.

### **CE** Index

#### **Economic Indicators**

2008 2007

JEMAMJJASOND

#### DOWNLOAD THE CEPCI TWO WEEKS SOONER AT WWW.CHE.COM/PCI

#### CHEMICAL ENGINEERING PLANT COST INDEX (CEPCI)

| (1057.50 100)              |                    |                   |                  |               | 650- | <br>_ | _ | _ | <br>_ | _ | _ | _ | _ |
|----------------------------|--------------------|-------------------|------------------|---------------|------|-------|---|---|-------|---|---|---|---|
| (1957-59 = 100)            | Aug.'08<br>Prelim. | Jul. '08<br>Final | Aug.'07<br>Final | Annual Index: |      |       |   |   |       |   |   |   |   |
| CE INDEX                   | 619.3              | 608.8             | 531.5            | 2000 = 394.1  | 600  |       |   |   |       |   |   |   |   |
| Equipment                  | 761.0              | 746.4             | 632.9            | 2001 204 2    |      |       |   |   |       |   |   |   |   |
| Heat exchangers & tanks    | 784.2              | 760.1             | 602.9            | 2001 = 394.3  |      |       |   |   |       |   |   |   |   |
| Process machinery          | 680.6              | 669.5             | 601.5            | 2002 = 395.6  | 550  |       |   |   |       |   | Ш |   | L |
| Pipe, valves & fittings    |                    | 875.5             | 747.4            | 2003 - 402.0  |      |       |   |   |       |   |   |   | L |
| Process instruments        | 457.8              | 459.0             | 428.6            | 2000 - 402.0  |      |       |   |   |       | Π | Ш |   | I |
| Pumps & compressors        |                    | 869.9             | 836.1            | 2004 = 444.2  | 500  |       |   |   |       |   |   |   |   |
| Electrical equipment       | 468.1              | 468.2             | 434.5            | 2005 = 468.2  |      |       |   |   |       |   |   |   | I |
| Structural supports & misc |                    | 815.8             | 669.9            | 2006 - 400 6  | 450  |       |   |   |       |   |   |   | I |
| Construction labor         | 325.1              | 322.1             | 317.4            | 2000 = 455.0  | 450  |       |   |   |       |   |   |   | I |
| Buildings                  | 529.7              | 521.5             | 478.6            | 2007 = 525.4  |      |       |   |   |       |   |   |   |   |
| Engineering & supervision  | 352.3              | 352.9             | 356.4            |               | 400  |       |   |   |       |   |   |   |   |

Starting with the April 2007 Final numbers, several of the data series for labor and compressors have been converted to accommodate series IDs that were discontinued by the U.S. Bureau of Labor Statistics



#### Project Sponsor:

Sargent & Lundy

#### Informational Resources:















#### Calculations