IPRO 307 Intermodal Container Transport Solutions

ILLINOIS INSTITUTE OF TECHNOLOGY

IPRO 307

- Streamlining Intermodal freight yards
- Understanding how a freight city functions
- Making the transportation of people and goods more efficient and sustainable

Team Objectives

- MiJack- Pathfinder technology simulation
 - (Ryan Beau-Luby, Joel Zook, Matt Wiese)
- Define current techniques for intermodal facilities and transportation logistics at Joliet.
 - (Bryan Slonski, Konstantin Balakirev, David Dziuba, John Bouikidis)
 - Existing Facilities
 - Truck/Train/Barge/Pipeline
 - Intra facility transportation
 - Regulations
- Investigate alternative fuel types and applications.
 - (Matt Cargill, Matt Kehoe, Melat Tesfaye, Chris Wiseman)
 - Availability
 - Emissions and environmental effects
 - Efficiency comparison
 - Laws, regulations, restrictions

Team Process

- Monitoring progress
 - Meeting twice a week, presenting progress each day.
- Adapting to change
 - The existing facility group has expanded to overlap with alternative fuels in creating an off site fueling station
- Obstacles overcome
 - Realization of related trends involved with urban development
 micro -> MACRO
 - Integrating the surrounding aspects of a freight facility into a cohesive whole
 - Lack of students having experience with simulation programs
 - Obtaining data from fueling stations and freight yards

Cas ting

TITUTION I

N

Google

Image IndianaMap Framework Data Image NOAA Image USDA Farm Service Agency

6273 ft

Truck Processes: Conventional Terminal

Conventional Terminal Diagram

Conceptual diagram showing truck flow in a conventional intermodal terminal. Notice that most traffic within the facility is two-way.

Truck Processes: Terminal with Pathfinders

Outbound containers are delivered to designated corridor. Pathfinder bays, identified by numbers, ensure no miss-parked containers. The truck driver operates the Pathfinder to load the container into the designated Pathfinder bay. Blocking is automatic. For inbound pick up, container/ Pathfinder information is sent via communication software to the truck line the moment that the container is set in the Pathfinder bay.

Pathfinder Terminal Diagram

Conceptual diagram showing truck flow in a future terminal with Pathfinder technology. Notice that all traffic within the facility is one-way.

Simulation Programs

Simulation Results (custom)

Intermodal Systems Simulator

Edit	View Insert Format Help
🗳 (🖬 📾 🖪 🚜 🕺 🛍 🕮 🕫 🥵
mport	t java.util.Random;
aport	t java.util.ArrayList;
ublic	c class PathfinderSolution implements Terminal (//restraints:
	//restraints: //assumes containers are always where they are needed to be
	// assumes containers are arways where they are needed to be
	private Random random = new Random();
	private int railroads, gantryperrail;
	private Rail rails[];
	private int capacity;
	private int dropOffPercent; //percent of Trucks that are going to drop off a container
	private int pickUpPercent; //percent of trucks dropping off a container that are picking one up too
	private int timeBetweenTrains = 600; //5 min between two trains
	private int lifts = 0;
	private int trucks = 0;
	private int trains = 0;
	private long trucktime = 01;
	private long traintime = 01;
	private class Rail (
	int status = 0; //0: waiting for train, 1: train is being unloaded, 2: train is being loaded
	int containers;//# of containers in rail
	int count = 0;//counter for the train
	int train = 0;//length of the train int enteredAt = 0;//time the train entered
	int enteredat = U;//time the train entered int[] counters://a counter for each gantry grane
	<pre>int[] counters;//a counter for each gantry drame ArrayList<truck> trucks = new ArrayList<truck>();//list of trucks at the rail</truck></truck></pre>
	public Rail (int cranes, int cratainers, int time) (//intialize the Rail
	enteredat = time;
	counters = new int[cranes];
	containers = random.nextInt(40) + 60;
)
	}
	private class Truck (
	2

Example Pathfinder(Future) Solution Simulation ~/simulation> java Simulator Pathfinder 3 80 30 ****** * Pathfinder Solution * Settings: Railroads = 3 * Settings: Cranes Per Railroad = 1 * Lifts Per Hour = 104.33 * Trucks Per Hour = 172.00 * Trains Per Hour = 0.73* Average Truck Duration Within Terminal = 5.10 minutes * Average Train Duration Within Terminal = 161.02 minutes

Peak Oil

The Growing Gap Regular Conventional Oil: Discovery, Production & Remaining

Alternative Fuels

Fuel Type	Availability	Cost of fuel (gal)	Vehicle Alterations Required	Processing	Efficiency	Emmisions	Pros / Cons	Infrastructure
Vegetable Oil (WVO, SVO)			Ethanol					
Biodiesel				$ \left(\frac{(1300x10^3 J)}{mol}\right) \left(\frac{1mol}{46g}\right) \left(\frac{786kg}{m^3}\right) \left(\frac{m^3}{264gal}\right) X = 6.225x10^{20} J $ $ \left(\frac{(7.40x10^{15}gal)}{1}\right) \left(\frac{57.38x10^6 gal}{year}\right) = 1.28x10^8 (years * plants) $				
Algae Fuel (biodiesel/biob utanol)			Focus	X	27(years)X =	1.28x10 ¹⁴ (years • pla 185185 plants year		
Hydrogen fuel cell				(286x10	3/ (1mol) (1000g)	Hydrogen $\left(\frac{0.0899kg}{m^3}\right)\left(\frac{m^3}{264gal}\right)$)	-201
Propane/LPG					<i>X</i> = 1	$\frac{1}{264gal}$ $\frac{1}{264gal}$ $\frac{1}{264gal}$ $\frac{1}{264gal}$ $\frac{1}{264gal}$ $\frac{1}{264gal}$		
Ethanol	7				27(years)X =)(264gal) = 2.08x1 2.08x10 ⁶ (years • pla 7.70x10 ⁴ plants		, , , , , , , , , , , , , , , , , , ,
CNG					<i>x</i> :	= 2852 plants year Biodiesel		
LNG				(4.4		$\frac{(41x10^{12}gallons)}{(371gal)} = 535937(ye)$	ars + plants)	
	minite and				$X = 1.98 \times 10^{-10}$	$^{4}plants => 735 \frac{plan}{yea}$	ts r	

Alternative Fuel Station

Value

- Value of project, benefits drawn from project
 - A more efficient intermodal freight terminal allows for less materials, less time required for drivers, and less room for error
 - With oil running out and greenhouse gas emissions rising, we need alternatives to keep our economy running and also keep the earth as an inhabitable environment
- Major impacts, risks and challenges
 - Faster more efficient yards may eliminate jobs
 - Capital development and installation
- Ethical Issues
 - Land use and neighboring area
 - Alternative fuel restrictions (EPA fines \$30,000 for engine/tank alterations without a permit)
- Next Step for continuing IPRO = in-city = Harvey, Illinois

In Conclusion

•Increased reliance on basic freight traffic

•The importance of implementing alternative fuel for practical, economical and ecological purposes