

IPRO 309

Building an Integrated Turn-Key X-Ray Fluorescence Analysis System Using Bent Laue Optics

Team Members:

Jim Adduci, Justin Ferguson, Isaac Martis, Ken McIvor, Josh Sammons, Kelli Shaver, George Takhtamyshev, Deepti Yadlapalli

Sponsor: Quercus X-Ray Technologies Advisor: Dr. Grant Bunker

April 30, 2004

Background

- X-Ray Absorption Fine-Structure (XAFS)
 - Hit sample with energetically tuned Xray beam
 - Sample emits unique spectrum of X-ray photons
 - Collect and measure desirable photons
 - Discard background (noise) photons

Diagram of BCLA Diffraction Paths

Bent Crystal Laue Analyzer

- Problem: Conventional Detectors are Inadequate
 - Solid state detectors saturate easily
 - Poor energy resolution
- Solution: Bent Crystal Laue Analyzer (BCLA)
 - Diffractive filtering device
 - Good energy resolution and collection efficiency
 - Inexpensive compared to complex silicon devices

Pro/E Model of BCLA Bender Frame

Objective

• Integrate BCLA into marketable system

- Investigate promising technologies
 - Research and evaluate current products
 - Procure/construct viable solutions
 - Test designs
- Balance engineering aspects of project
 - Performance
 - Ease of use
 - Cost of manufacture
- Design prototype

Conceptual Design

Research Groups

- Motion control
 - Research practical positioning technologies
 - Obtain suitable product(s)/system(s)
- Detectors
 - Investigate X-ray detector technologies
 - Design and test detector/amplifier systems
- Data acquisition and control
 - Interface motion control and detector systems
 - Prepare alignment software

- Objectives
 - Integrate smoothly with other components
 - Economic viability
 - Specs
 - Size
 - Range of Motion
 - Spatial Precision
 - X-Axis Resolution/Repeatability
 - Z-Axis Resolution/Repeatability

- Motors
 - Piezo Electric
 - (nm) resolution
 - Expensive
 - Servo
 - Cheap
 - Requires (expensive) feedback hardware
 - Stepper
 - Economical
 - Load independent
 - Feedback optional

- Stages
 - Linear Stages
 - Economical
 - Good precision
 - Z-Wedges
 - Compact
 - Precise
 - Expensive

•Stage Assemblies

- Orthogonal Linear Stages
- Linear Stages with Z-Wedge
- Non-Orthogonal Linear Stages

- Specifications
 - Detectors
 - Response on the order of 1 MHz
 - Detect X-Ray energies ~6-30 keV
 - Amplifier(s)
 - Amplify current signal on the order of nA
 - Provide suitable voltage signal for data acquisition
- Considerations
 - Compact size for on-stage instrumentation
 - Light weight

- Solid-state detectors
 - PIN diodes
 - Avalanche photodiodes
 - Passively-implanted planar silicon (PIPS) detectors
 - Multi-element solid-state arrays
- Ionization chambers
- Scintillator/photomultiplier tubes
- Proportional Counters

- Amplifier
 - Integrating operational amplifier
 - Low input bias current
 - No large feedback resistor
 - Noisier at lower count rates
 - Output-voltage hold capability
- Data conversion
 - Analog-to-digital conversion (ADC)
 - Voltage-to-frequency conversion (VFC)

- Conclusions
 - Inexpensive solid-state detector (PIN diode, PIPS)
 - Use simple op-amp integrating circuit amplifier
- Recommendations
 - Test detectors in multiple configurations
 - Parallel-1 amplifier
 - Parallel-individual amplifiers
 - Test integration w/ microcontroller (if used)
 - Test multiple detector array geometries

Interfacing

- Motion control systems
- X-ray detectors

Integration

- Develop a system that performs automatic alignments, using the motion control system and x-ray detector
- Allow existing instrumentation to easily collect data from the x-ray detector

Considerations

- DAC cannot contribute much to manufacturing cost
- Final product must support multiple configurations

Interfacing

Research

- Communications standards
- Protocols and command languages
- Signals from X-ray detectors

Current Applications

- MDrive 17 stepper motor
- PDA 750 amplifier
- PC-based prototype

PDA 750 Transimpedance Amplifier

MDrive 17 Microstepping Motor

Integration

Automatic Alignment

- System controller
- Alignment algorithm
- User interface

• Existing Instrumentation

- Typical equipment chain
- Signaling standards
- Voltage-Frequency conversion

Conclusions

- Use Linux-based software for beamline integration
- Use PC data acquisition card for A/D conversion
- Positioning software needs more work
- Recommendations
 - Further develop positioning software
 - Work with groups to prevent project complications

Project Obstacles

- Lab Space
- Products specs (tech reps)
- Improper lab equipment
- Computer failure
- Physical system integration

Expenditures To Date

Two PCs	\$1.600
books	\$270
Two linear stages	\$1,200
Two IMS MDI17 motors	\$400
Two terahertz technologies RS232 amplifiers	\$1 800
1 PIN diode/stand	\$1,000
30 PIPS detectors (used on EBay)	\$160 \$160
A/D converter board	\$300
ZWorld Coyote single board controller	\$200 \$200
Prototyping workstation and DVM	\$200
Dual bench power supply	\$250 \$250
Electronics supplies	\$200
Cleaning and painting costs	\$300 \$850
Two Microfocus X-Ray generators (Cu&W)	\$43,000
Total	\$50,730

Learning Objectives

- Completed objectives
 - Project management
 - Effective communication
 - Information organization
 - Equipment procurement and testing
- For next semester
 - Information assessment
 - Completion of system integration
 - Test and modify prototype design
 - Continued research and development

Questions?