IPRO 316 Creating an Interdisciplinary Robotics Initiative (a) IIT

Spring 2004 Advisor: Peter Lykos

IPRO Members

Name	Dept.	Level	Role in IPRO
The Conversion	3		IPRO Leader
Christopher Jones	EE	Freshman	• Peppy Robot – Design
			Competition Initiative
Shirali Patel	EE	Junior	Competition Initiative
			Posters and Presentations
Eugenia De Marco	MMAE	Sophomore	• Peppy Robot – Mechanical
Jonathan Hovde	MMAE	Junior	• Peppy Robot – Sonar
Daniel Krol	СРЕ	Junior	• Peppy Robot – Programming
			Website developer
Paul Stachowicz	ECE	Junior	• Peppy Robot – Power
Gabriela Monis	EE	Senior	• Mobile Platform – Design,
			documentation
Henry Oyuela	СРЕ	Senior	• Mobile Platform – Design,
			programming
			• Website developer
Nicholas Burica	EE	Junior	Rhino Arm Bartender

Objectives & Team Organizations

The IPRO members were organized into different teams to work on each of the following objectives:

- Work towards developing an Institute for Robotics Education at IIT
- IIT Grand Challenge Robotics' Competition
 - The Peppy Robot
- Mobile Platform (Roomba)
- Rhino Robotic Arm

Robotics Education at IIT

Develop an Interdepartmental Institute for Robotics Education at IIT

Perk corporate interest in IIT

Attract enthusiastic and intelligent new undergraduate students

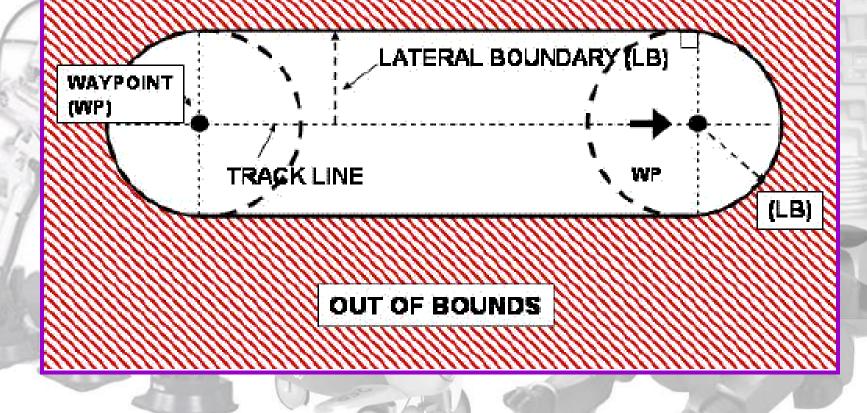
Robotics'

Competition

Robotics' Competition

Objectives:

- Raise the interest of IIT students and faculty in robotics.
- Provide a high level of competition and exposure to practical problems.
 - Promoting innovative thought and application of modern technology.


Robotics' Competition

Course:

- Closed course around IIT, disclosed just before the competition.
- Length of course not more than 1.5 miles.
- Include obstacles of any compositions like dirt, grass, gravel, pavement, etc.
- Range along the course will be decided by waypoint paths as shown in the diagram on next slide.

Course Range - Waypoints

Robotics' Competition

Robots:

- Completely autonomous, switched on at starting line, and then on their own, by following GPS waypoints along the paths.
- Should weigh less that 200 lbs., dimensions not exceeding 36 x 48 inches .
- Should be capable of traversing pavement, dirt, grass, gravel, and maneuver around Chicago curbs..

Robot examples

Pioneer P3-DX

Pioneer PTRV

Pioneer P3-AT

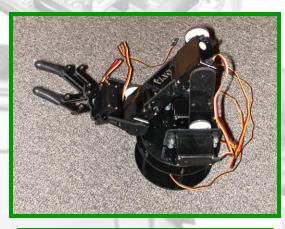
Robotics' Competition

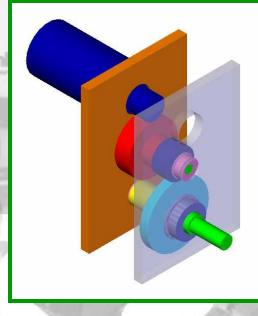
Future Plans:

- We laid the ground work for this challenge.
- IPRO 316 Fall 2004 can pursue on and gather more information to successfully go through with this competition.

The Peppy Project

Objectives:


- Develop an expandable robot platform
- Install speech recognition and commands
- Develop sonar object identification
- Leave a detailed record for future semesters

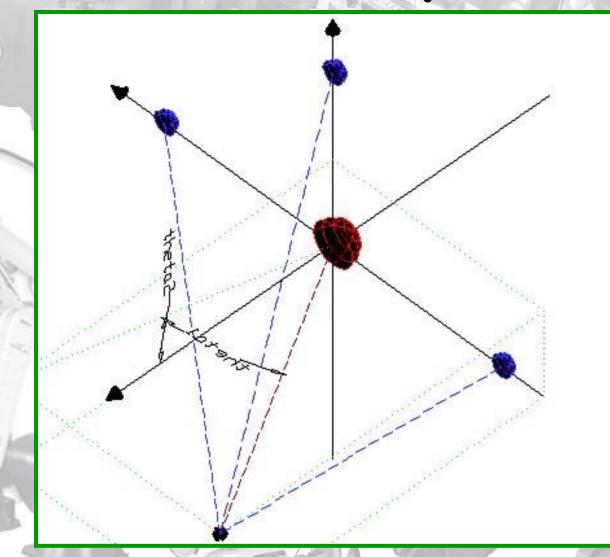

Chassis:

Mount to Scorpion frameUsing Lynx robotic arm

Transmission:

 Developed using Fisher-Price motors and other
 components donated by
 the ThunderChickens

Speech Recognition:


- Unique interface
- Programmable commands
- Talk-back option
- Relay information to FRC

Sonar:

- The robot is to be able to identify the range and shape of objects
- Create a sonar array that will communicate target object data to the controller.

Sonar Array

Future Goals:

- Advanced features
 - Invention to product
 - Video pattern recognition
 - Robot location via GPS
 - MMAE or EE research for advanced features.
 - Build Sonar analysis software and integrate into controller programming.
 - ENPRO to follow up and long-term business goals.

Introduction:

- Roomba
 - Robotic floor sweeper created by iRobot Corporation.
 - Patent covers only the Microcontroller
 - Platform for robotic experiments.

Objectives:

New Microcontroller

Functionalities of a Mobile Platform
Ability to integrate additional functions

Integrate Microcontroller onto Roomba

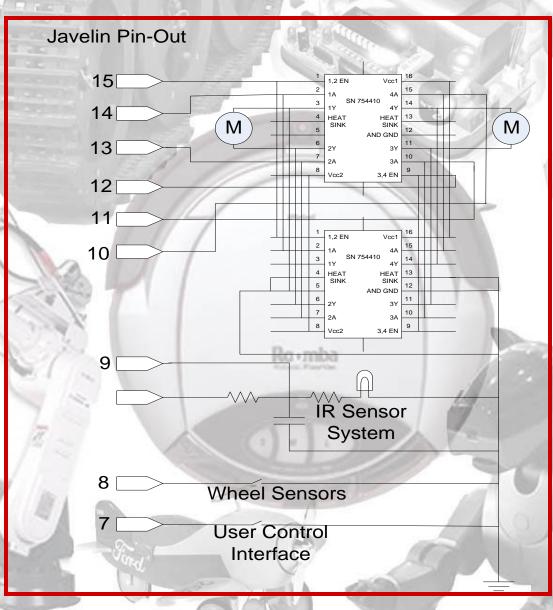
Method:

- Reverse engineer the Roomba
 - Familiarization with the Parallax Javelin Stamp
- Test and program each individual object
- Design algorithm to run the entire system

Roomba Components:

- User Control Interface
- Wheel Sensors
- Front Bumper Sensors
- Wheel Motors
- Roomba Battery

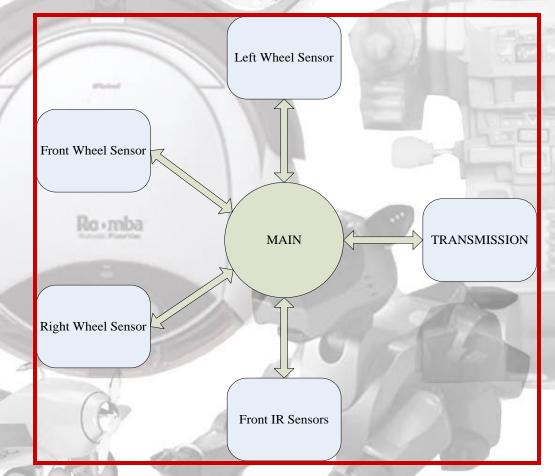
Additional Circuitry:


• Texas Instruments Quadruple Half H-Drivers

Ra mba

Analog to Digital

• Push Button Circuitry


Main Circuit Design

Mobile Platform Group

Programming the Javelin:

- **Quick Facts:**
 - 32k RAM
 - Java Based
 - 16 I/O Pins
- Operating System Background Virtual Peripherals

Mobile Platform Group

- Where We Are Going:
- Educational Manual
- Roomba B
- Room for More

Rhino Robotic

Arm Group

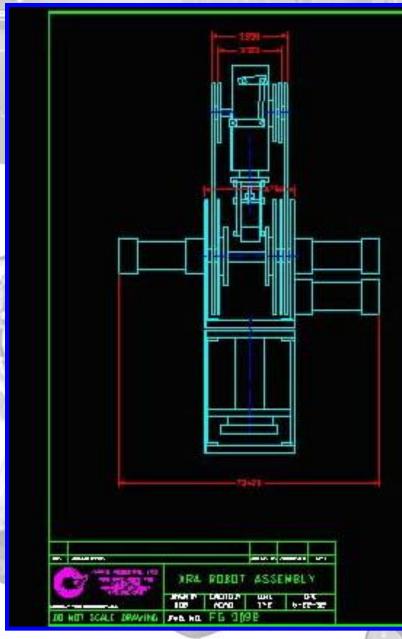
Rc · mba

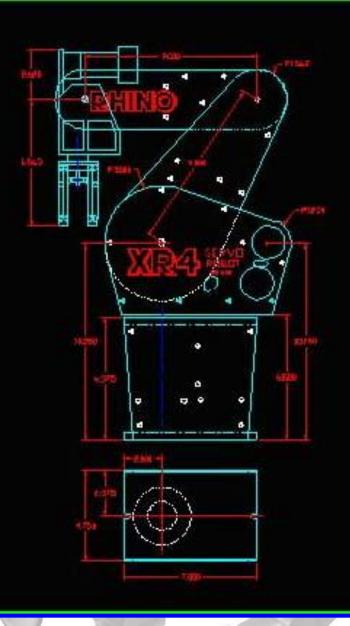
0

Objectives:

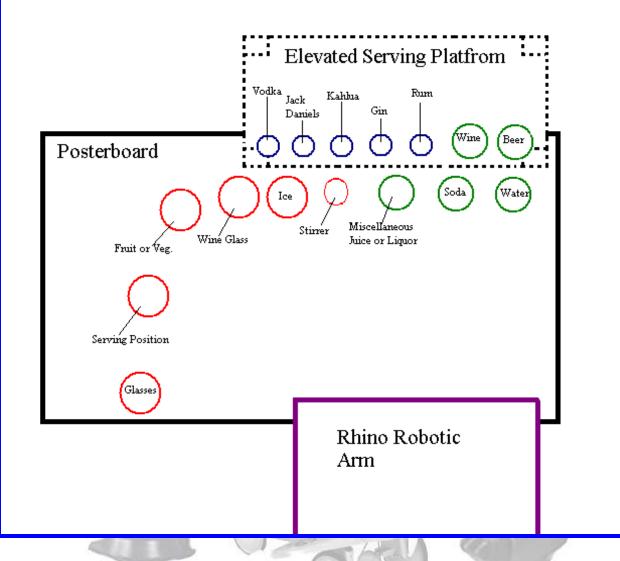
- Learn the range of use of the Rhino Robotic Arm
- Automate the arm to work a general everyday function
- Function taken at hand: Bartending
- Program the Arm to mix and serve multiple drinks
- Make a mini-manual for upcoming IPRO

Key Points:


Located in MMAE Showcase Lab in E1
Costs around \$15,000
Monitored by Graduate Student Nikhil Sherman


Ra • mba

Method:


Plotted various points on a board and platform to assemble into a computer code
Then ran and tested the written code
Demonstrate my progress and program via TV/VCR on IPRO day

Rhino Robotic Arm XR-4

Board Diagram

Pictures:

Conclusion:

- Evaluating the capabilities of this Arm was a great asset.
- This project could be used in a classroom setting as a guideline to learn more about the various uses and about automation.
 - The manual, that will be left behind, will serve as a integral tool for students.

IPRO 316 Creating an Interdisciplinary Robotics Initiative (a) IIT

Spring 2004 Advisor: Peter Lykos