#### PRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

BUO IRRO 310 Assistive Devices for Blind and Visually Impaired Swimmers

I Swim, You Swim, We All Swim

5/1/2009

**BUOY Final Presentation** 

## Outline

- Problem
- History
- Mission
- Team Organization and Development
- Technologies Utilized
- Outreach to Community
- Ethical Issues
- Accomplishments
- Future Recommendations

## **Statistics**

## Problem

- Safety
- Independence
- Concealment of device

ech.

Detect obstructions



## **BUOY Mission Statement**

"To develop, test, and implement assistive technology with the community to promote safety and improve independence of blind and visually impaired (BVI) swimmers."



## **Feam Organization**

Active Team 1: Invisible Fence Tech. Coleman Baar (ME): LEAD Kevin Kruse (BME) Li Li (EE) Maggie Ng (BA) Zhi Ma (EE) Ryan Freund (CE) Active Team 2: Sonar Tech. Meghan Murdock (ME): LEAD Lorne Turrentine (ME) Hsuen Yew (BME) Bingjian Zhang (EE) Jeff Reilly (Physics) Mohammed Rehman (ECE)

**Documentation** Jeff Reilly (Active 2): LEAD Coleman Baar (Active 1) Lorne Turrentine (Active 2) Ryan Freund (Active 1)

#### Media

Li Li (Active 1): TEAM LEAD Bingjian Zhang (Active 2) Mohammed Rehman (Active 2) Zhi Ma (Active 1) Survey Maggie Ng (Active 1): TEAM LEAD Meghan Murdock Active 2) Hsuen Yew (Active 2) Kevin Kruse (Active 1)

**Faculty and Advisors** 

Frank Lane (Rehab Psych), David Gatchell (BME), Ken Schug (Chem)

### Sonar Technology

### Laser Beam Technology





# TECHNOLOGY

#### Invisible Fence Technology



## SONAR

#### RESEARCH

- Circuit design and modification
- Power consumption, underwater signal, cost analysis
- Miniaturization, wave propagation in air and water interface



#### **RESULTS / ANALYSIS**

- Signal insufficient to penetrate water
- Max distance 4.5 ft
- Max angle of detection 10 degrees
- Fourier analysis identified wave properties



#### TESTS

- Ultrasound parking sensors
- Air interface test
- Air Water interface test
- Water interface test
- Detection zone test

## SONAR

#### CHALLENGES

- Underwater function
  - Underwater transducer
  - Water proofing
- Further research
  - Circuit and amplifier
  - Optimal power and frequency output
- Access to expertise and sources
- Budget & time constraint





#### POSSIBLE NEXT STEPS

- Involve expert on SONAR
- Research underwater SONAR
- Construct a circuit or modify device
- Documentation to prevent back-tracking

**TESTS** 

## Invisible Fence

#### RESEARCH

- Operations of the device
- Functionality in air and water
- Specifications of device
- Circuit design
- Properties of magnetic fields



#### Lab testing for device specifications



Pool test for boundary detection

Pool test for application and reliability in water



### Invisible Fence

## **RESULTS / ANALYSIS**

- This technology works reliably in air and water
- Unmodified design identifies boundaries
- This technology does not communicate position
- Steel and copper pipes have negligible effects on magnetic fields
- Maximum distance of 55in (Single Loop)

### CHALLENGES

- Location of wire (Pool floor, Lane lines, etc.)
- Position feedback
- Interference with magnetic field
- Integrating alert system into receiver
- Integrating receiver into swim-wear

### **POSSIBLE NEXT STEPS**

- Modify receiver's alert type
- Integrate receiver into swim-wear
- Design position identification
- Develop working prototype



#### **RESEARCH**:

- Applications of lasers underwater
- Examine different circuit designs



#### Prototype laser detector with lid off.

#### Beam 1 Switch 1 Beam 2 Beam 3 Beam 4 Control Unit Detector 4 Detector 4 Detector 1 Switch 2 Beam 4

Pool layout and design for laser system.

#### TESTING:

- Tested to make sure circuit worked
- Tested to see if prototype was waterproof
- Tested through tank of water

#### RESULTS / ANALYSIS

- Circuit functions properly, length of signal depends on the size of the capacitor
- Housing unit waterproof
- Device functions properly through water tank

### Laser

## CHALLENGES

- Alerting User
- Laser beam interference
- Differentiating position
- Power Source





### **POSSIBLE NEXT STEPS**

- Design a control system for detectors and end switches
- Create supports for lasers and end switches
- Examine various circuits with time delays
- Further testing including
  - Under water testing
  - Housing material oxidation



## OUTREACH





for People Who are Blind or Visually Impaired

### CHICAGO LIGHTHOUSE VISIT Technology Presentation









Survey Administration27 surveys collected



## Survey Result

#### **Device Location**



 The majority of BVI individuals surveyed preferred a low-profile wristband device





 Almost half of the responses received indicated a preference for a vibration alert over any audio signal

#### IPRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

## Survey Result



 The most popular price range was \$100+, reasons for the high price choice may include the opportunity for financial assistance

I P R O



All device features were ranked very important, but ease of  $\bigcirc$ use and alert type were ranked the most important

## Wisconsin Center BVI Passive Device Testing

- Long term testing of the eyeSwim device
  - Long term user & staff feedback
  - o Durability
  - Failure mode identification
- Created new Surveys & Consent forms
  - 2 surveys: (1) Swimmer, (1) Staff
  - Awaiting IRB Approval
  - Wisconsin Center will administer





## Wisconsin Center Passive Device Testing



ISTRATIO

## CHALLENGES

**PRO** 

- Potential drop off date: week of 5/11
- Agreement between WCBVI and IIT
  - Liability of WCBVI if the device is damaged while in their control
  - Potential for injury during a device malfunction
  - IIT Legal has been contacted
- Copy of release forms\parental consent forms
- Descriptions of previous testing of the device

PUBLIC INSTRU

 Approval by Wisconsin Dept of Public Instruction Legal and Wisconsin Dept of Administration

State of Wisconsin - Department of

## WEBSITE

IPRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

> Devices that Assist Blind & Visually-Impaired individuals in Swimming and Other Exercise Activities

INTRODUCTION

PRODUCT

SURVEY

PARTNERS

GALLERY

ABOUT US

.: Contact Us

**IPRO 310** 

I swim, you swim, we all swim

#### .: Introduction

The problem posed with blind and visually impaired (BVI) swimmers is one of safety and independence. BVI individuals need to be able to orientate themselves in a swimming pool and avoid obstructions like lane-lines, pool walls and other swimmers for a safe experience. Additionally, it is important to BVI swimmers to maintain their independence and maintain a low profile during this experience. The Buoy team will focus on the design, testing and implementation of assistive technology focused on a pool environment with continuous input and



feedback from the BVI community. A current passive device created in previous IPROs will be field-tested in a BVI pool for the semester in order to identify failure-modes of the device and collect real-world BVI user feedback to discover areas for improvement. Additionally, two groups have been organized to assess the use of invisible-fence and

## ETHICAL ISSUES

### • Beneficence:

- Maximizing benefits for BVI community while minimizing risks
- Non-malfeasance:
  - Quality and safety of the prototypes
- Autonomy:
  - BVI community able to participate
  - Respecting their willingness to participate
- Justice:
  - Price and patent
- Fidelity:
  - The safety of testing environments

# ACCOMPLISHMENTS

- Verified applications of technology in a pool environment
- Documented research, testing, results, & conclusions of each technology in a technical report
  Help future IPROs understand our process
- Modified, obtained IRB approval, & administered userneeds survey
- Created user and staff passive device surveys and submitted for IRB approval
  - Set up testing and survey administration with WCBVI
  - Working with IIT Legal to comply with WCBVI requirements
- Developed BUOY Website

# RECOMMENDATIONS: TECHNOLOGY





### Sonar

 Question further development due to cost and complexity of the circuitry

### Invisible Fence

- Modify receiver's alert type
- Integrate receiver into swim-wear
- Design position identification
- Develop working prototype

#### Laser

- Alert user when a beam is interrupted
- Design position alerts
- Develop a working prototype



# RECOMMENDATIONS: OUTREACH

- Early Chicago Lighthouse visit
- Work with the WCBVI on passive device testing

BUOY

- Ensure website is accessible to the BVI community
- Post both passive device surveys and the user needs survey on the team website
- Research current assistive technology training
- Continue documentation to ensure continuity of IPRO semesters



# **Questions?**

