

Transforming Lives. Inventing the Future.

IPRO 331

Non-invasive Blood Glucose Monitoring

What is Diabetes?

 Diabetes is a disease in which the body ineffectively uses blood glucose for energy.

Type I

- Endocrine
- Previously known as juvenile onset
- Type II
 - Metabolic
 - Previously known as adult onset

Complications of Diabetes...

- Heart Disease
- Kidney Disease
- Eye Complications
- Neuropathy and Nerve Damage
- Podiatric Complications
- Dermal Complications

Complications of Insulin Treatment...

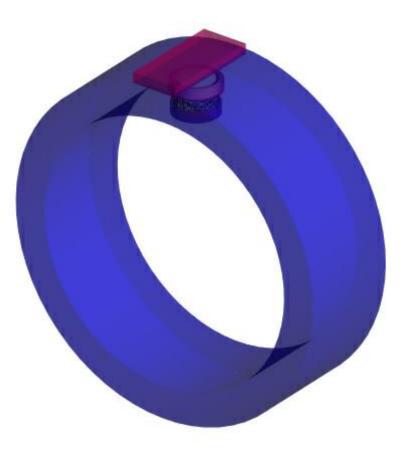
Hyperglycemia

Hypoglycemia

Current Methods

- Lancet/Syringe
- Glucose pump
- Glucowatch

Pros/Cons


Method	Advantage	Disadvantage
Lancet/Syringe	Accurate/Quick	Invasive Painful
Glucose Pump	Accurate/Self- monitoring	Invasive, can malfunction
Glucowatch	Non-invasive convenient	Inaccurate Unreliable

Objectives for the Semester

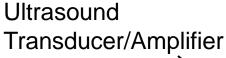
- Create a design for a non-invasive bloodglucose monitoring system:
 - □ Simple in concept
 - □ User-friendly (especially for children)
 - Does not hamper a person's daily lifestyle
 - Cost-effective
 - Portable

Overview of Design

- Ultrasound
- Vacuum Suction
- Reaction Method
- Transfer of Data

Ultrasound

Ultrasound Design

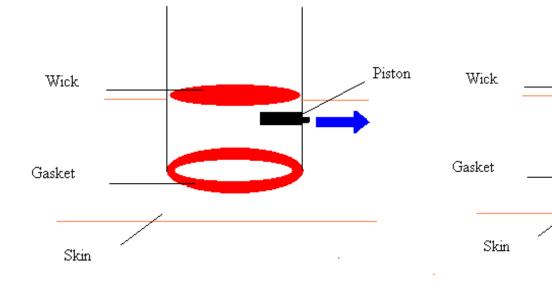

Components

- Transducer
- Amplifier

Frequency of 20 kHz

Requires 20 W power (battery-operated)

Ultrasound Example

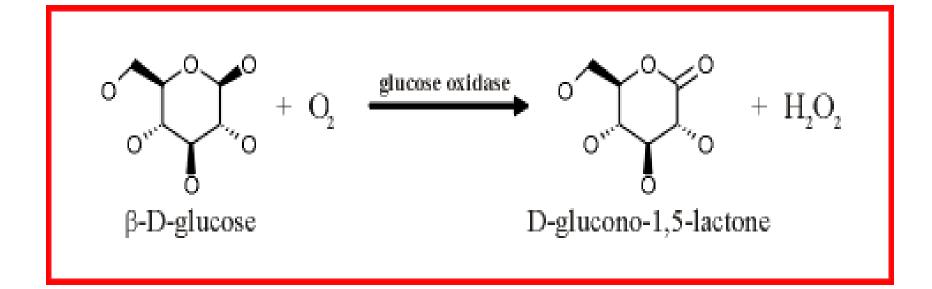

Return Electrode

Vacuum Suction

Purpose

To use vacuum pressure to draw interstitial fluid (ISF) continuously into the patch and over the glucose sensor inside it

Diagram


Activation of Piston

Upward movement of ISF

Piston

Reaction Method

Glucose Oxidase Reaction

Methods of Measurement •pO2 Electrode •H₂O₂ Electrode Mediator Electrode glucose gluconic acid glucose oxidase oxygen permeable (a) hydrogen peroxide (a) oxygen membrane or or (b) reduced mediator (b) oxidised mediator ٩Q electrode Glucose

electrons

Diagram of pO2 Electrode

Comparison of Reactions

pO₂ Electrode: Set E = -0.6V, O_2 is reduced to H_2O

- H_2O_2 Electrode: Set E = +0.68V, H_2O_2 is reduced to $O_2 + 2H^+$
- **Mediator Electrode:** Set E = +0.19V, Ferricinium⁺ reduced to Ferrocene

*All electrode potentials (E) are relative to the CI-/AgCI,Ag0 electrode.

The current is then measured and using the following equation the rate of reaction can be determined:

i = nFAvA

- I = current
- n = number of electrons transferred
- F = Faraday
- A = electrode area
- vA = rate of reaction

Control the rate of reaction by diffusion using a membrane

 Electric current produced is proportional to the analyte concentration (independent of enzyme & electrochemical kinetics)

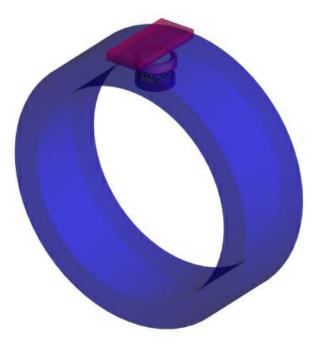
Data Transfer

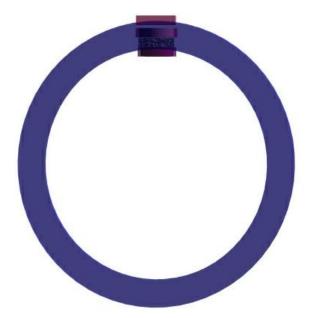
Data Transfer

Two types:

- Direct Automated measurement and periodic downloading
- Indirect Manual measurement and the data communicated via telephone or online services to the central receiver

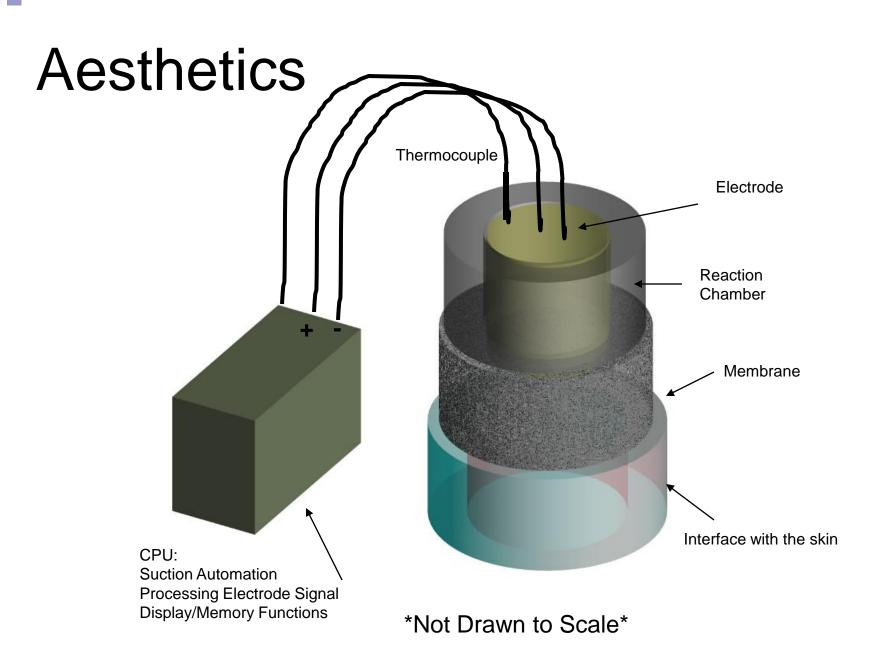
Data Transfer (contd.)


- Method of blood glucose measurement involves:
 - Transcutaneous biosensors (blood glucose conc. is an extrapolation)
 - Data Port
 - Computer
 - Diabetes Management Software


Data Transfer (Contd.)

Advantage: Less prone to human error

Disadvantage: Transcutaneous measurement of glucose is less precise


Aesthetics

Angled View

Side View

Other Details

Total Estimated Cost

- Ultrasound- \$25-\$100
- Suction-\$25
- Electrode-\$50-\$75
- Data Transfer-\$25-\$50
- Aesthetics-\$10-20
- Total- \$150-\$270

Accomplishments

- Unique design and concept
- Integrated multiple aspects of the design
- Identified proper reactions
- Created visual prototype

Considerations

- Temperature affects the reaction
- Skin irritation
- Membrane clogging
- Make the device look like a common device
- Convince users that the device is accurate

Future Goals

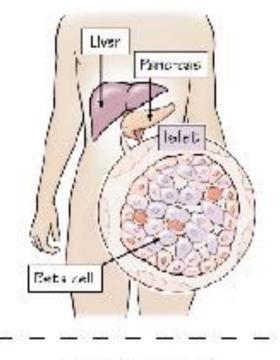
- Company sponsorship
- Make a prototype
- Test the prototype
- Make improvements upon design
- Clinical testing
- Obtain a patent

Group Members

- Dr. Emmanuel Opara, M.D., Faculty Advisor, IIT
- Adeseye Adekeye, MBB
- Sheetal Bhat, BME
- Kristina Chapman, AE/AP, Project Leader
- Michelle Chen, MBB
- Bhargava Gannavarapu, MBB
- Ronak Lakhia, MBB
- Jayashree Nakkana, BME
- Priti Patwari, MBB
- Amanda Ritter, BIO
- Jennifer Tullman, CHE
- Maeran Uhm, MBB
- Norby Wang, MBB

Group Members

Acknowledgements


- Dr. Matt Corcoran, University of Chicago
- Ms. Darcy Evon, IPRO Office
- Dr. Myron Gottlieb, CHE
- Dr. Ralph Muehleisen, CAE
- Dr. Victor Perez-Luna, CHE
- Dr. Vincent Turrito, BME

Website

Http://www.iit.edu/~ipro331s04/

Non-Invasive Blood Glucose Monitoring

Illinois Institute of Technology

(Please click the picture*!)

Questions/Comments