

May 1, 2009

IPRO 306 Final Presentation

Avanessian, Aris Carbayo, Nestor Carrio, Aris Verma, Vibhor Espinosa, Juan Carlos Gherardini, Scott Medina Rivera, Mauricio

Panjwani, Varsha Rodriguez, Fernando Schrei**n**er, Stephen

Faculty advisor: John Caltagirone

Agenda

- Sponsor and Problem Statement
- IPRO 306: Goals and Structure
- Machine Scheduling in SAP
- Six Sigma Training
- Results and Conclusion
- Questions

SLOAN.

Introduction

- Started in 1906 by William E.
 Sloan the inventor of the flush valve
- 80% of domestic market share for flush valves
- Opportunity: Need for new manufacturing practices

Problem Statement

Problem Statement

- No formal production schedule
- Inventory shortages or overstock
- Poor inventory integrity
- Promise inaccurate shipping dates to customers

Objectives of this IPRO

- Create a scheduling protocol using SAP
 - Eliminate overstocks and inventory shortages
 - Minimize obsolescence through better planning
 - Increase accuracy of shipping dates
- College level Six Sigma training package
 - Six Sigma approach to inventory integrity
 - Green belt certificate
 - Help with the delivery of the training

Team Mission and Values

■ <u>Mission</u>:

Improve Sloan Valve's global supply chain

- Values:
 - Quality, on-time, high tech project
 - Use every team member skills
 - Team work

Team Organization

Gantt Chart

Team Work Management

Tuesdays: General meeting at IIT

Wednesdays : Scheduling team

Fridays: Six Sigma team

IPRO 306-SLOAN VALVE

How did we manage to develop an accurate scheduling process?

Methodology

- Interviewed employees + visited the plant + understood the process
- 2. Determined needed data and formulas to develop a production schedule in SAP
- Implemented and tested the new scheduling procedure + determined performance metrics

Step 1: Understand the Problem

- 1. Interviewed employees+ visited the plant + understand the process
 - Understand the process
 - Understand the current scheduling process and its problems
 - Decided to use SAP for scheduling purposes

What is SAP?

- SAP is an ERP software capable of integrating multiple business applications
- An ERP system integrates and automates all sides of business operations.
 - Planning
 - Manufacturing
 - Sales
 - Others

What is SAP?

- SAP is categorized into 3 core functional areas:
 - Financial
 - Human resources
 - Logistics

Sales and Distribution (SD)
Material Management (MM)
Production Planning (PP)

• Others

- Used innovative ideas and brainstorming to overcome obstacles calculating:
 - Safety stock
 - Reorder point
 - In-house production time
 - Lot size

SLOA

- Raw material lead time
- Total lead time

Total lead time: max(RMLTD+IHPTB, RMLTC)+IHPTA

Total lead time: MAX (5+3, 4) + 2 = 10

SLOAN.

Step 3:Implement and Measure

- 3. Implement and test the new scheduling procedure
 - Development of the policy and procedures
 - Tested in a simulation program
 - Implementation line by line while fixing bugs

Step 3:Implement and Measure

- 3. Determine performance metrics
 - Build to Schedule Compliance
 - Old compliance
 - New compliance
 - No deviation will mean:
 - No overstock
 - No shortages

IPRO 306-SLOAN VALVE

How did we manage to give SLOAN a Six Sigma approach?

Methodology

1. Understand the Six Sigma Methodology

2. Analyze the Materials Movements Problem

3. Create a Complete Training Package

Step1: Understanding Six Sigma

The Sigma Value

Step1: Understanding Six Sigma

The DMAIC Cycle

Step 2: Material Movement Problem

Visit the plant and understand the processes

 Discussed Quality Goals and brainstormed Six Sigma initiatives

Spoke with floor supervisors

Step 2: Material Movement Problem

 Discrepancies between department counts

Errors are passed forward

Entry mistakes

Step 2: Material Movement Problem

Discussed possible sources of error

 Looked at historical SAP records of the problem

Composed a draft project charter

Step 3: Create the Training

- Devise the syllabus
- Divide the material into component modules
- Research the material and compile it
- College style lecture structure
- Review material

Step 3: Package Structure

Primary resource are powerpoint slides

Summary handouts

References

Comprehensive review

Training Example

SLOAN.

IPRO 306-SLOAN VALVE

CONCLUSIONS

Challenges

Finding proper resources

Coordination – Six Sigma team

Not enough time to observe the impacts

Expected Achievements

- Reduce shortages of manufactured parts by 50%
- Reduce WIP inventory by 50%
- Increase inventory turns of WIP by 100%
 - Increase perfect order performance by 10%
- Increase BTS compliance from to 60% to 95%

Expected Achievements

Complete Training Package

SLOA

- 200 slides of training material
- Numerous handouts and glossaries
- Syllabus based off the ASQ Six Sigma Green Belt Body of Knowledge
- Acted as a trigger to the Six Sigma approach to resolve quality problems
- Savings of \$2000-\$5000 per employee trained

Impact on the Sponsor

- Cultural change for employees
- New person responsible for scheduling
- New approach to quality problems
- More knowledgeable work-force

Looking Ahead

- Some of the IPRO members will stay in contact with the company if any implementation problems comes out :
 - Nestor Carbayo (Scheduling team member)
 - Vibhor Verma (Six Sigma team member)
 - John Caltagirone (Faculty advisor)

SLD

Next Steps & Recommendations

- Fine-tune parameters
- Demand forecast and lean manufacturing
- Train employees in Six Sigma
- Resolve quality issues with a Six Sigma approach

Team Ethics

- Access to SAP and to confidential company information
- Aware of the harm we can cause to the company
- The entire team has signed a Confidentiality Agreement with SLOAN

Results for the IPRO Team

Gained real world business experience

 Learned how to deal with an actual client

 Allowed us to apply our skills to a real world problem

Results for the Company

Fulfilled expectations

SLOAN.

- Impressed with team commitment
- Very Satisfied with the IPRO Team

Happy Customer = Successful IPRO

Acknowledgements

- Steve Rodgers
- Jane Klink
- Darrell Jones
- Eugene Short
- Robert Briggs
- Pat Catapano
- Tim Schiffbauer
- All other Sloan Valve's personnel

Thank You For Your Attention

Any questions?

