IPRO 303

Failure Prediction Modeling of Power Plant Emission Control Systems

Students

Insiyah Aratsu David Belanger John Bouikidis Zachary Capps Cari Hesser Sean Irish Satyam Kaneria Brett McQuillan Lavesh Mohinani Jay Patel

Advisor Edmund Feldy Sponsor SmartSignal

Presentation Outline

Project Sponsor Goals and Objectives Ethics Team Development Summary of Results **Obstacles and Resolutions Conclusions and Achievements** Recommendations Acknowledgements

Project Sponsor

- SmartSignal
 - Failure Prediction Modeling
 - Power Plant Generation
 - Expand to Emission Controls
 - David Farrell, Product Manager

Goals and Objectives

- Regulations
- Emission Control Systems
- Failures and Degradation
- Instrumentation
- Detection of Failures

Ethics

- Confidentiality
- Team Contribution
- Team Diversity
- Perspectives
 - Seven Layers of Integrity
 - Ethics, It's Good
 Business
 - Professional Engineering Code of Ethics

Team Development

- Group Consensus
- Volunteer
- Subgroups
- Team Leader

Team Structure

Team Development

Gantt Chart

Team Development

Results

Electrostatic Precipitators Baghouses Selective Catalytic Reducers Wet-Scrubbers

Overview Instrumentation and Failures Regulations

Electrostatic Precipitators Overview

Results

- Ionization
- Migration
- Collection
- Charge Dissipation
- Particle Dislodging and Removal

Instrumentation and Failures

- Instrumentation
 - Primary and Secondary Voltages
 - Current sparks and Arcs per minute
 - Power input and output
 - Actual conditions versus programmed
 - Current parameters versus transformer ratings

- Failures
 - Broken Electrodes
 - Back Corona
 - Relatively low Input voltage
 - Inadequate rapping
 - Sparking

Electrostatic Precipitators

Regulations

- Federal Laws
 - Clean Air Mercury Rule
 - Where we currently stand?
- State Laws
 - Connecticut first state to pass regulations on mercury emissions

Baghouses Overview

Results

- Three Types of Baghouses
 - Mechanical Shaker
 - Reverse Air
 - Reverse Jet

Instrumentation & Failures

- Pressure Drop
- Fire
- Exiting air too opaque

Regulations

- Same as Electrostatic Precipitators
- Federal Laws
 - Clean Air Mercury Rule
 - Where we currently stand
- State Laws
 - Connecticut first state to pass regulations on mercury emissions

Selective Catalytic Reducers Overview

Results

- Injection of Ammonia
- Mixing of polluted air and Ammonia
- Reaction across catalyst surface

http://en.wikipedia.org/wiki/Selective_catalytic_reduction

Instrumentation and Failures

- Instrumentation
 - Temperature
 - Ammonia Slip

www.cpsc.gov

www.sensidyne.com

- Failures
 - Catalyst Deactivation
 - Catalyst Deterioration
 - Ammonia Slip
 - Mechanical Issues

http://fossil.energy.gov/programs/powersystems/p

Selective Catalytic Reducers

NOx Regulations

- Federal Laws
 - Clean Air Act
 - 1990 Acid Rain Program
- State Laws
 - "Ozone Season"
 - May 1–September 30

http://www.traxcorp.com/scrregs.html

	Phase I NOx emissions (lbs/MMBtu) Effective January 1, 1996	Phase II NOx emissions (lbs/MMBtu) Effective January 1, 1996
Dry-Bottom Wall-Fired	0.5	0.46
Tangentially Fired	0.45	0.4
Wet-Bottom Wall-Fired	Not Applicable	0.84
Cyclone-Fired	NA	0.86
Vertically Fired	NA	0.8
Cell Burner	NA	0.68

Selective Catalytic Reducers

Wet Scrubbers Overview

Results

- Pollution Control Technology
 - Removes SOx, Fly Ash, and pollutants from gas streams
 - Capture pollutants through liquid droplets
- Scrubbing Liquid
 - Spraying
 - Pool of liquid
 - Other methods

Instrumentation and Failures

- Pressure Gauge (gas flow)
- Pressure Gauge (nozzle line)
- Temperature Monitor
- pH Probe
- Humidity Sensor
- Vibration/Acoustic Monitors

SOx Regulations

- Federal Laws (EPA)
 - The level of the annual standard is 0.030 parts per million (ppm), not to be exceeded in a calendar year.
 - The level of the 24-hour standard is 0.14 parts per million (ppm), not to be exceeded more than once per calendar year.

Obstacles and Resolutions

- Initial Organization
 - Team Leader
- Contacts
 - Aggressive Calling/Other Sources
- Ethical Issues
 - Ethics Discussion
- Lack of Information
 - Documentation and Teamwork

Problem Solving Techniques

- Background information
- Review
- Interviews/First-Hand Experience
- Review and Analysis
- Filling in the Gaps

Obstacles and Resolutions

Conclusions and Achievements

- Failure Indication Charts
- Contacts Lists
- Instrumentation Varies
- Electrostatic Precipitators
- Baghouses
- Selective Catalytic Reducers
- Wet Scrubbers
- Other Control Techniques Used

Recommendations

- Power Plants "Inundated with Information"
- SmartSignal Technology
- Improve Power Plant Maintenance
- Save Industry Money

Acknowledgments

SmartSignal IPRO and Illinois Institute of Technology Midwest Generation We Energies Edmund Feldy Professor Clack Professor Noll

Questions

