IPRO 303

Failure Prediction Modeling of Power Plant Emission Control Systems

Students

Insiyah Aratsu
David Belanger
John Bouikidis
Zachary Capps
Cari Hesser

Sean Irish
Satyam Kaneria
Brett McQuillan
Lavesh Mohinani
Jay Patel

Advisor
Edmund Feldy
Sponsor
SmartSignal

Presentation Outline

Project Sponsor Goals and Objectives **Ethics** Team Development Summary of Results Obstacles and Resolutions Conclusions and Achievements Recommendations Acknowledgements

Project Sponsor

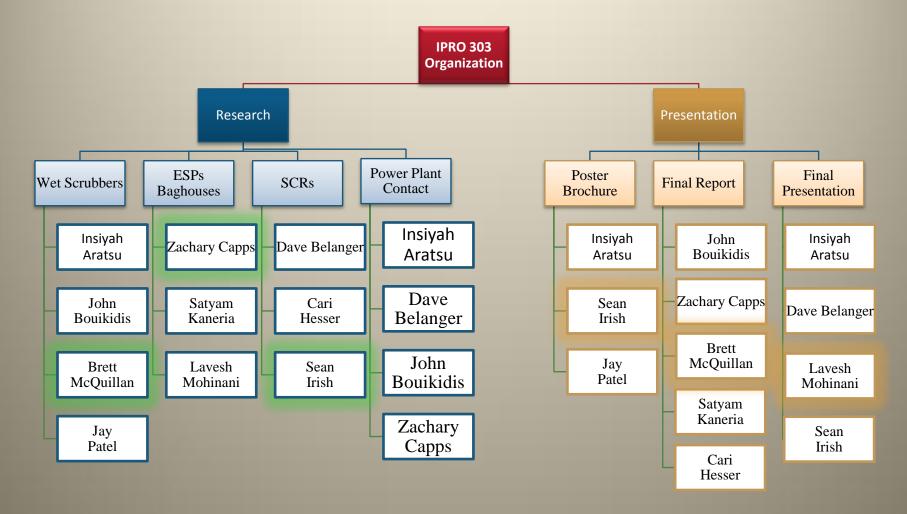
- SmartSignal
 - Failure Prediction Modeling
 - Power Plant Generation
 - Expand to Emission Controls
 - David Farrell, Product Manager

Goals and Objectives

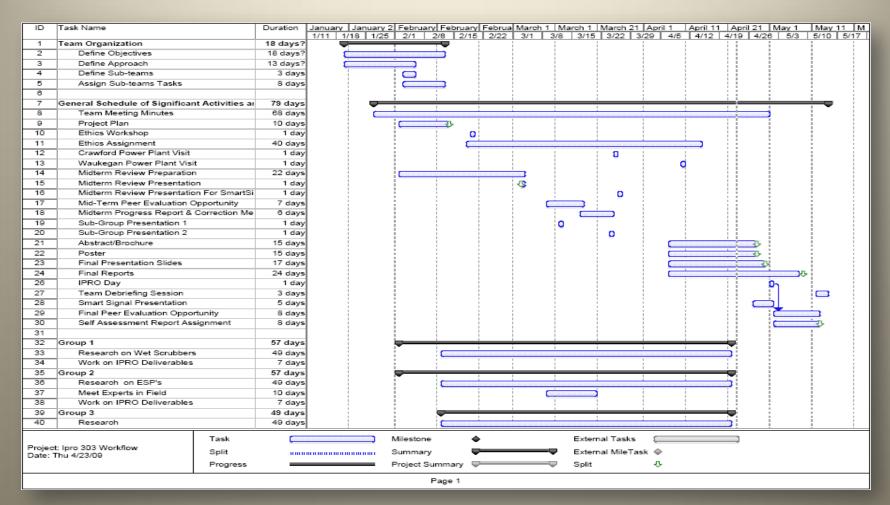
- Regulations
- Emission Control Systems
- Failures and Degradation
- Instrumentation
- Detection of Failures

Ethics

- Confidentiality
- Team Contribution
- Team Diversity
- Perspectives
 - Seven Layers of Integrity
 - Ethics, It's GoodBusiness
 - Professional EngineeringCode of Ethics


Team Development

- Group Consensus
- Volunteer
- Subgroups
- Team Leader



Team Structure

Gantt Chart

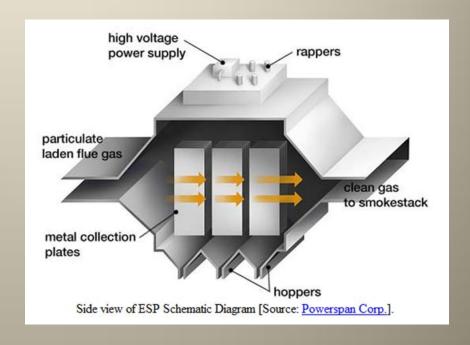
Results

Electrostatic Precipitators

Baghouses

Selective Catalytic Reducers

Wet-Scrubbers


Overview
Instrumentation and Failures
Regulations

Electrostatic Precipitators Overview

- Ionization
- Migration
- Collection
- Charge Dissipation
- Particle Dislodging and Removal

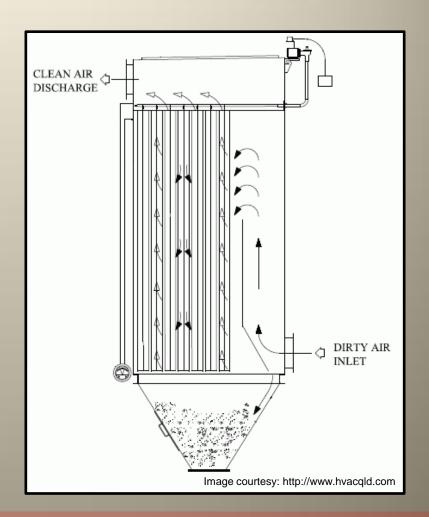
Instrumentation and Failures

Instrumentation

- Primary and Secondary Voltages
- Current sparks and Arcs per minute
- Power input and output
- Actual conditions versus programmed
- Current parameters versus transformer ratings

Failures

- Broken Electrodes
- Back Corona
- Relatively low Input voltage
- Inadequate rapping
- Sparking


Regulations

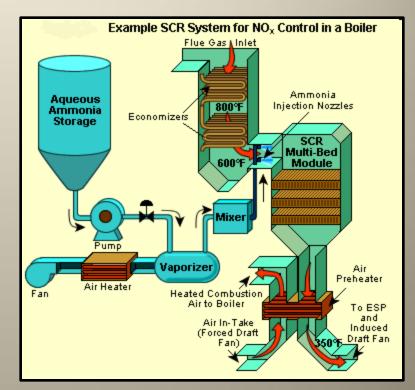
- Federal Laws
 - Clean Air Mercury Rule
 - Where we currently stand?
- State Laws
 - Connecticut first state to pass regulations on mercury emissions

Baghouses Overview

- Three Types of Baghouses
 - Mechanical Shaker
 - Reverse Air
 - Reverse Jet

Instrumentation & Failures

- Pressure Drop
- Fire
- Exiting air too opaque


Regulations

- Same as Electrostatic Precipitators
- Federal Laws
 - Clean Air Mercury Rule
 - Where we currently stand
- State Laws
 - Connecticut first state to pass regulations on mercury emissions

Selective Catalytic Reducers Overview

- Injection of Ammonia
- Mixing of polluted air and Ammonia
- Reaction across catalyst surface

http://en.wikipedia.org/wiki/Selective_catalytic_reduction

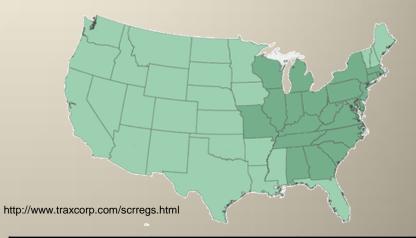
Instrumentation and Failures

- Instrumentation
 - Temperature
 - Ammonia Slip

www.cpsc.gov

www.sensidyne.com

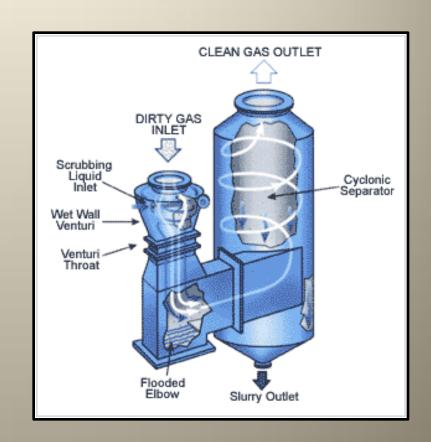
- Failures
 - Catalyst Deactivation
 - Catalyst Deterioration
 - Ammonia Slip
 - Mechanical Issues



http://fossil.energy.gov/programs/powersystems/p

NOx Regulations

- Federal Laws
 - Clean Air Act
 - 1990 Acid Rain Program
- State Laws
 - "Ozone Season"
 - May 1–September 30



	Phase I NOx emissions (lbs/MMBtu) Effective January 1, 1996	Phase II NOx emissions (lbs/MMBtu) Effective January 1, 1996
	Effective January 1, 1990	Effective January 1, 1990
Dry-Bottom Wall-Fired	0.5	0.46
Tangentially Fired	0.45	0.4
Wet-Bottom Wall-Fired	Not Applicable	0.84
Cyclone-Fired	NA	0.86
Vertically Fired	NA	0.8
Cell Burner	NA	0.68

Wet Scrubbers Overview

- Pollution Control Technology
 - Removes SOx, Fly Ash, and pollutants from gas streams
 - Capture pollutants through liquid droplets
- Scrubbing Liquid
 - Spraying
 - Pool of liquid
 - Other methods

Instrumentation and Failures

- Pressure Gauge (gas flow)
- Pressure Gauge (nozzle line)
- Temperature Monitor
- pH Probe
- Humidity Sensor
- Vibration/Acoustic Monitors

SOx Regulations

- Federal Laws (EPA)
 - The level of the annual standard is 0.030 parts per million (ppm), not to be exceeded in a calendar year.
 - The level of the 24-hour standard is 0.14 parts per million (ppm), not to be exceeded more than once per calendar year.

Obstacles and Resolutions

- Initial Organization
 - Team Leader
- Contacts
 - Aggressive Calling/Other Sources
- Ethical Issues
 - Ethics Discussion
- Lack of Information
 - Documentation and Teamwork

Problem Solving Techniques

- Background information
- Review
- Interviews/First-Hand Experience
- Review and Analysis
- Filling in the Gaps

Conclusions and Achievements

- Failure Indication Charts
- Contacts Lists
- Instrumentation Varies
- Electrostatic Precipitators
- Baghouses
- Selective Catalytic Reducers
- Wet Scrubbers
- Other Control Techniques Used

Recommendations

- Power Plants"Inundated with Information"
- SmartSignal Technology
- Improve Power Plant Maintenance
- Save Industry Money

Acknowledgments

SmartSignal

IPRO and Illinois Institute of Technology

Midwest Generation

We Energies

Edmund Feldy

Professor Clack

Professor Noll

Questions

