ILLINOIS INSTITUTE OF TECHNOLOGY

IPRO 457-315 Design of a Large Scale Structure

100 1507 m. 1 (200)

TH ELEW

2036-

IPRO 315 large scale structure Team

Faculty: Jamshid Muhammadi

Professional Consultant: Jie-Hua Shen

Research

- All research to date involves current automated automotive parking garage structures
- There are several similar projects both in the united states and Europe
- These projects utilize a variety of methods to lift the cars and place them in the parking racks

IPRO 315 Sub teams

COUTH ELEVATION

BOILD BLCC

- Architecture
- Architectural Engineering
- Structural Engineering
- Mechanical Engineering
- Transportation Engineering
- Cost Estimating

Structural Engineering

after a

And the stands of the second

Thomas

YOUTH ELENIE

N PONTE ENDER

Entripe

1201

SOUTH ELEVATION

STEEL TRAVELOND

11007

BOILD RICE !

0+20-1 / cated

10440

1010 3 1437 X ++ L

1400 LD

20401 36.3% CA-1

Step 1: Conceptualization

- Necessary Features
 - Small Footprint
 Reliable Strength and Safety

Attractive Appearance

- Options
 - Reinforced Concrete vs.
 Steel Frame Structure
 - Automated vs. Self
 Park

Step 2: Design

- Steel Frame Structure
 - ✓ Allows for Compact, Efficient Design
 - ✓ Lateral Force System:
 - ✓Braced Frame in N-S Direction and Moment Resisting Frame in E-W Direction
 - ✓ Allows for Clearance Necessary for Automated Parking System

✓ Gives Structure "Industrial" Look

Step 3: Details

Braced and Moment Frame Details

- Braced Frames on each side
- Braced frame 1st Floor (2L6 X 4 X ¹/₂) 4th floor (2L5 X 3 ¹/₂ X ¹/₂)
- 1st floor Center Columns (W14 X 61) – Moment Frame
- 4th floor Center Columns (W14 X 48) - Moment frame

Roofing Detail

- non composite deck 4.5 deep, 2.5" thick and weighs 45 psf.
- Interior beam design
 - o Beam W16 X 57
 - o Girder W18 X 35

Design Model

Example of part of the structure computer model.

Mechanical Engineering

BOILD PICE !

the the second

Alt Carton

Thomas

YOUTH ELEVIS

N PONTE ENDER

Enellaria

1001

A DOW THE JAS

SOUTH ELEVATION

STEEL TRAVELOND

1001

0+20-1 CATLY

10440

1010 3 1637 X + 6

A SAL

20401 36.3% CA.

Outline

- Moving elevator structure, steel construction. Elevator moves on rails in conveyor aisle between parking spaces.
- Driver leaves vehicle at entrance, elevator picks up vehicle at entrance, transfers to vacant bay on desired level
- Elevator retrieves vehicle from bay, moves vehicle to ground level exit, driver picks up vehicle at exit

Research

- Types of elevator systems, hydraulic, pulley systems.
- Types of vehicle transfer systems; pallet system, roller system, comb system
- Research on sensor systems
- Research on elevator structure and construction
 - Research on elevator components

Design and Calculation

- Elevator structure, total weight of moving structure
- Elevator platform design, pulley system and counterweight design
- Elevator-to-bay transfer mechanism design
- Structure movement mechanism

Parking Entrance Sensor Requirements

- Entrance must complete the following tasks:
 - i. Check the vehicle dimensions.
 - ii. Check if vehicle is correctly placed on elevator platform.
 - iii. Check if anyone is in vehicle before parking.
 Requirements (i) and (ii) are met by using LTW's system manufactured by SICK called the "Photoeyes" system and infrared sensors.
 - Patron will be directed by light system.
 - Requirement (iii) is met by using motion sensors
 - All systems routed to outside control box and user interface.

Elevator Structure

Elevator Platform

Architectural Engineering

LIGHTING DESIGN

Bay: •Metal Halide •95 Watts

Aisle: •Compact fluorescent •426 Watts

ELEN

Outdoor: •Metal Halide •465 Watts

•17.1 kW required to run lights

Driving up to the garage

ELEN

A typical aisle

•Fluorescent lamps will last up to 20,000 hours. Metal halides up to 30,000 hours.

204

TRANSPORTATION ENGINEERING

Site Design

Site geometric redesign using programs such as Google Earth and Microstation.

ELEN

(Pavement marking and traffic flow plans being creat

Average Annual Daily Traffic

16,200 31st

> 300 an a

about 15cars/min 31st st. 16,200 about 12cars/min

Michigan Ave. 16,300 about 12cars/min

ELEN

Traffic conclusion:

Countermeasure studies show that lane widening or turn lane additions are not recommended because the garage wont affect traffic flow considerably. The existing lane conditions are more than adequate.

Return of Green Area

<u>New IIT Park</u> (Existing pay lot west of track)

51,000sf

TH ELEVATION

31st.

lichigan

QV

State S

Improved Landscaping

(East of track, north, south, and east of garage driveway.) 41,000sf

Total Square Feet = 92,000

Existing conditions are at about 450 spaces.

Proposed garage is at 600 spaces.

Final Layout

References

- http://www.pr.com/company-profile/product/2720-4355
- http://www.inter-roller.com/Tower%20Park%20System.htm
- http://www.treehugger.com/files/2005/03/automatic_parki.php
- <u>http://www.eltodo.cz/Webova_prezentace/2_Doprava</u>
- http://www.linkvox.com/catalog.0.html
- <u>http://www.popularmechanics.com/blogs/technology_news/4213198.</u>
 <u>html</u>

Which Price!

- http://www.landliving.com/articles/000001008.aspx
 - LRFD Manual of Steel Construction, 3rd Edition

ELEN