

Spring 2009 Phase 3

Innovating Process Improvements in Manufacturing

IPRO 304 INTERPROFESSIONAL PROJECTS PROGRAM

Advisors and Members

Members

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

- Advisors: William Maurer Sheldon Mostovoy
- Sponsor: A. Finkl & Sons Co.

Team:

- Anandha Abhay
 - Anthony Bergeron
 - **Christopher Catalina**
 - **Jason Entler**
 - **Maximillian Estrada**
 - **Alexander Kolbasov**
 - **Vishal Patel**
 - Vien Quach
 - Jay Taggart
 - Sunghwan Yeo

Ethics

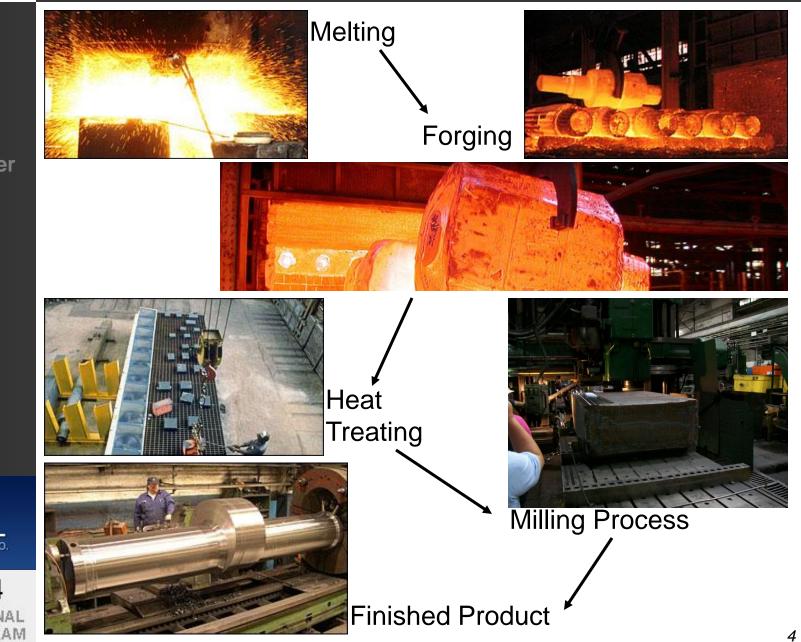
Members

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Preamble: IPRO 304 believes that a code of ethics is fundamental to maintaining an honorable and respectable presence inside and outside of the classroom. Members of IPRO 304 shall conduct their themselves in accordance with the ethics standards stated below.

- Conduct research and classroom discussion in a manner that is consistent with accepted honor and decency.
- We will strive to maintain the highest standards of honesty and integrity in all endeavors associated with the IPRO.
- Be civil and respectful in professional and academic interactions, avoiding discrimination, based on race, religion, or age.
- Treat other students, professors and host fairly.
- Be constructive without malice in evaluating the work of students.
- Encourage the free and open exchange of ideas and information without fear of retaliation.


A. Finkl & Sons Co.

Members

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Members

Introduction

- Research Accelerometer
- Experimental Design

۲

- Data
- Results
- Questions

Advancement Opportunity

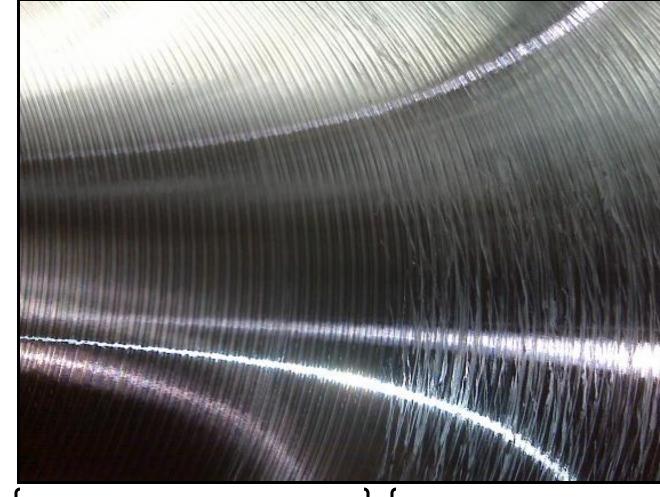
- Milling machine (below) contains inserts that get broken during the milling process
 - To develop a working prototype
 - Automatically monitor & detect broken inserts
 - Provide A. Finkl & Sons with the proper data & statistics of which solution to invest in

Business Perspective

Members

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions


Finish Cut with Broken Insert

Business Perspective

Finish Cut with Broken Insert

No Insert Failure

Failure

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Business Perspective

Finish Cut with Broken Insert

Failure

Members

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

No Insert Failure

Objectives of Current IPRO

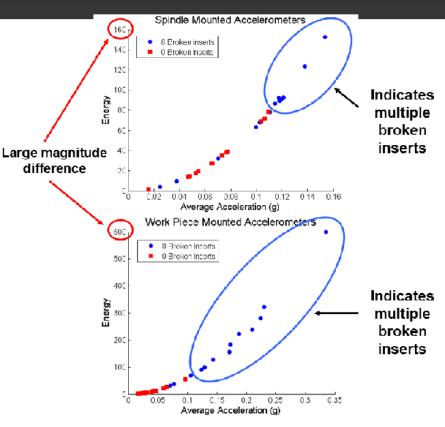
Members

Introduction

Research Accelerometer

Experimental Design

Data


Results

Questions

Develop a system to detect broken inserts by use of accelerometers.

Alert the machinist monitoring machine in order to replace inserts.

Research, test and inform A. Finkl & Sons of a possible alternative to pursue an automated insert breakage detection system.

Objectives of Current IPRO

Members

Introduction

Research Accelerometer

Experimental Design

Data

Results

Questions

Developing a method of analysis.

Intensive observational on site data collection.

Accounting for a wide range of variables:

Depth of cut Speed of processing Hardness of material Operator inconstancies Part geometry Age of machines Location of accelerometer

Identifying characteristic signature of a broken tooth.

Team Organization

Data Collection

Members

Introduction

- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Information Technology

- Anandha Abhay
- Anthony Bergeron
- Jay Taggart

Data Processing

- Vishal Patel
- Vien Quach

Data Analysis

- Christopher Catalina
- Jason Entler
- Maximillian Estrada
- Alexander Kolbasov
- Sunghwan Yeo

Current Methods for Tool Monitoring

Members

Introduction

Research Accelerometer

Experimental Design

Data

Results

Questions

PROJECTS PROGRAM

OFESSIONAL

Wireless Accelerometer

<u>Cons</u>

<u>Pros</u> Wireless

Intermittent Data Collection

Easier Mounting Fragile

Wired Accelerometer

Pros

<u>Cons</u>

Constant Data Feed

Robust

LabView

Wired Limitations

Connection Concerns

Experimental Setup

Members

Introduction

Research Accelerometer

Experimental Design

Data

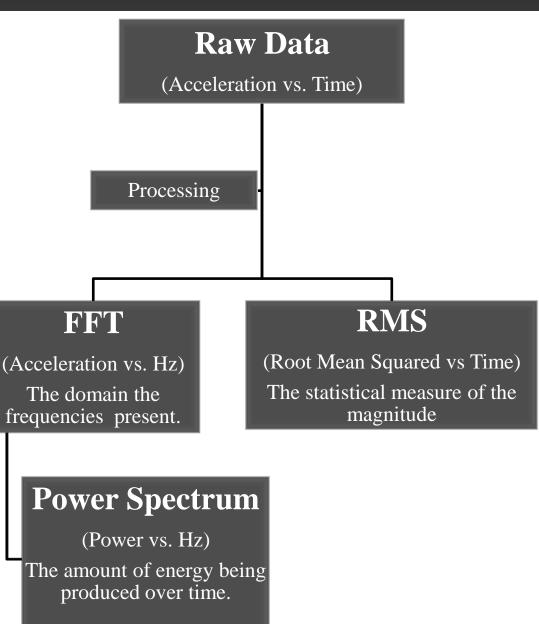
Results

Questions

Wireless Accelerometer Placements

Data Lifecycle

Members


- Introduction
- Research Accelerometer
- Experimental Design

Data

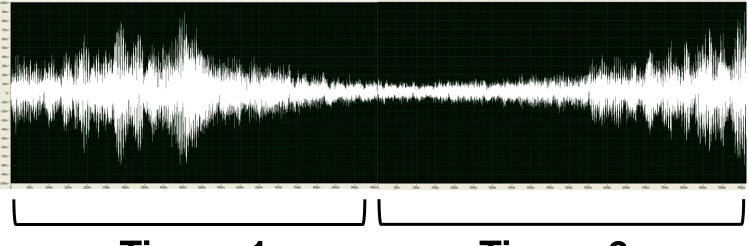
Results

Questions

Signal Analysis

Members

- Introduction
- Research Accelerometer
- Experimental Design


Data

Results

Questions

Signal Pulse

Time = 1 Time = 2

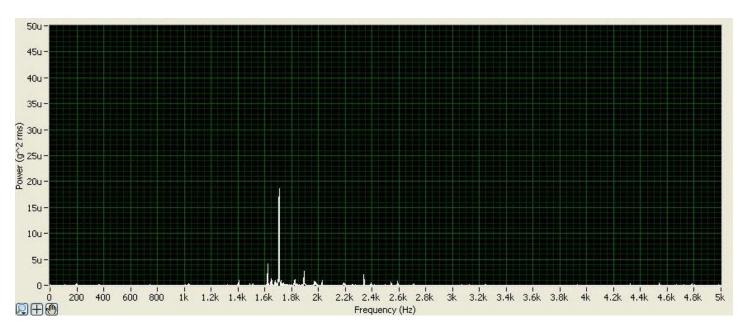
Signal Analysis

Members

- Introduction
- Research Accelerometer
- Experimental Design
- Data
- Results

IPRO

304

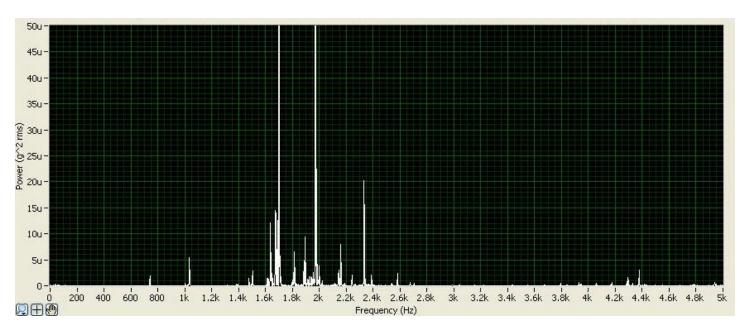

OFESSIONAL

PROJECTS PROGRAM

Questions

Power Spectrum

No Broken Inserts


Signal Analysis

Members

- Introduction
- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Power Spectrum

Broken Inserts

Members

- Introduction
- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Conclusions

- Wired over wireless
- Collect data on work piece not spindle
- Data contingent on many variables
- Accelerometer signal requires a lot of processing
- Making incremental progress to fulfill the IPRO's purpose

Members

- Introduction
- Research Accelerometer
- Experimental Design
- Data
- Results
- Questions

Future Work

Suggestions for Next IPRO

- Further implementation of wired accelerometer
- Use of LabView software
- Continue data collection
- Seek trends with processing considering all variables
- Signal processing assistance

Questions?

Members

Introduction

Research Accelerometer

Experimental Design

Data

Results

Questions

We would like to thank A. Finkl & Sons, Professors Maurer and Mostovoy, Liz Bilitz, Paritosh Mokhasi, Vladmir Frankfurt, Gary Gregga and the IPRO office for all their guidance and support.

Thank You!

IPRO Team 304

Questions?