

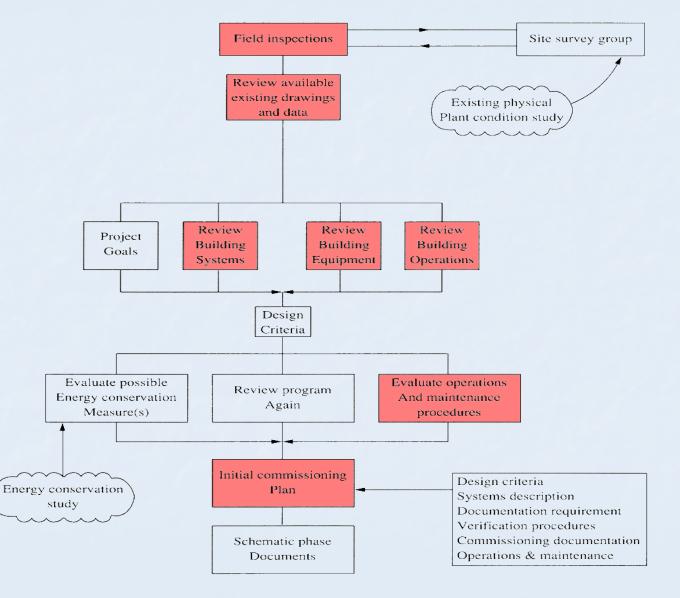
# Sustainable Planning for IIT Buildings

## Summer 2006 IPRO 320



# **Project Goals**

- Review building systems
- Quick snapshot of the condition of the buildings
- Reduced maintenance costs
- Review of building thermal comfort




# Work Distribution

- Field Data Collection Team
- Device Model Building Team
- Research and Data Analysis Team



# **Our Commissioning Process**





# **Field Data Collection Team**



# **Data Collection Overview**

Researched finding a Data Collection Device



 Recorded data collected as well as observations for further analysis



### **Device Model Building Team**

### **Air Capture Hood**







2nd Prototype ~ \$40

3rd Prototype ~ \$30

#### <u>GOALS</u>

Create an <u>AFFORDABLE</u> air capture hood

Measure air flow through <u>DIFFUSERS</u> While

Maintaining ACCURACY

In order to

IDENTIFY ducts that require maintenance.

### <u>WHY</u>

•A part of commissioning involves <u>AIR</u> <u>BALANCING</u>. This involves checking the flow through diffusers to make sure spaces are receiving adequate conditioned air

• This affects the <u>COMFORT</u> of the occupants

# Prototype 2



Preliminary Testing for Prototype 2

Prototype 2 was tested on an a supply and return diffuser, and compared with professionally taken measurements.

| Supply<br>Proto2<br>340 CFM | Professional<br>380 CFM | Error<br>10.5% |
|-----------------------------|-------------------------|----------------|
| Return<br>Proto2<br>65 CFM  | Professional<br>100 CFM | Error<br>35%   |

This prototype is fairly accurate at higher air flows, but less accurate at low flows. It would probably be possible to formulate a correction factor in proportion to air flow to achieve accurate measurements using a low cost, self-made hood.

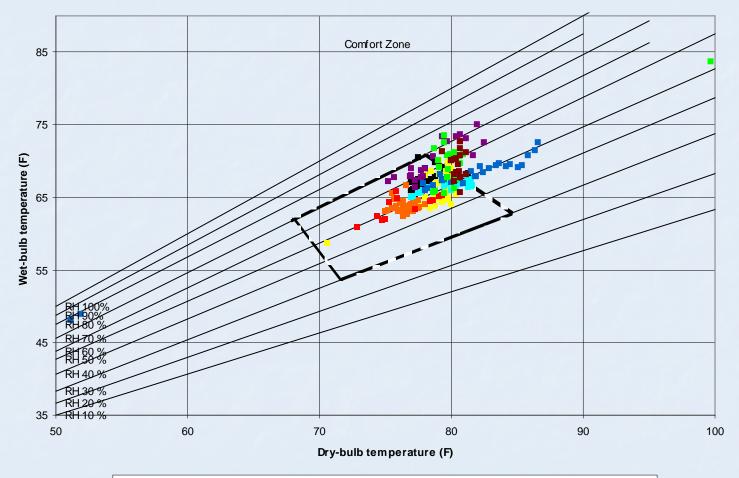
- Can be fairly accurate Extremely <u>AFFORDABLE</u> at \$40 Although <u>TIME CONSUMING</u>
- More appropriate for an IN DEPTH PROJECT



NUT

### Research and Data Analysis Team

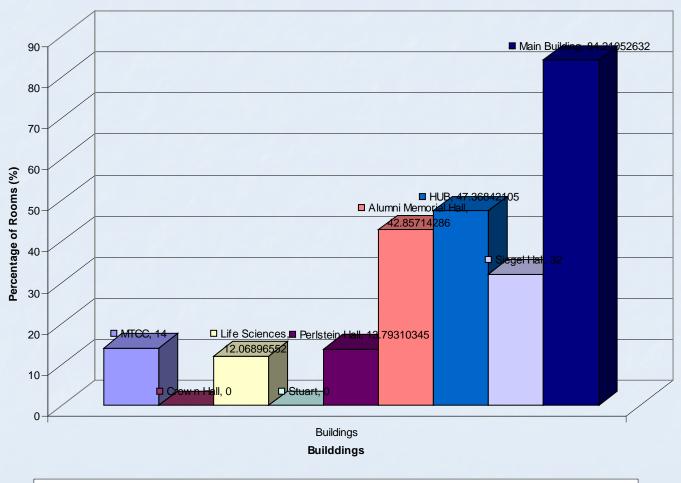



# **Data Analysis**

- Temperature and Relative Humidity plotted on a Wet-Bulb Temperature vs. Dry-Bulb Temperature Graph
- Points are analyzed according to their position in relative to comfort zone
  - Provide Performance snapshot of the buildings



### **Comfort Chart**


**Comfort Chart Summary** 



MTCC - Life Sciences - Stuart - Crow n Hall - Perlstein - Alumni Memorial Hall - HUB - Siegel Hall - Main

# **HVAC Data Analysis Summary**

Percentage of Rooms with Comfort Problems per Building



I MTCC Crow n Hall Life Sciences Stuart Perlstein Hall Alumni Memorial Hall HUB Siegel Hall Main Building



# Reference

Wang Shank K. *Handbook of Air Conditioning and Refrigeration* McGraw Hill, Inc, 1993

ASHRAE Handbook

Norman C. Modern Air Conditioning Practice. McGraw Hill Book Company Gregg Division 1983

http://www.ashrae.org/template/EducationLinkLanding/cate gory/1553;jsessionid=aaaeUIIcz91dJx retrieved July 23 2006



## Credit

- Prof. Nancy Hamill, Illinois Institute of Technology
- Russel Smith, Siemens Inc.
  - Bill Fridono, AEROTECH Balance Inc.



### **Question Time**