$\mathsf{IPRO}\ 348$ Silver Nanorods as Indicators of Thermal History

PROBLEM

Foodborne illness in the US costs \$152 billion annually in health related expenses

Majority of foodborne illnesses

are from non-produce items

References

Pew Charitable Trusts and Georgetown University, http://www.reuters.com/article/idUSTRE6220NO20100303 Centers for Disease Control, http://eatdrinkandbe.org/article/index.0331 fs producereport

WHY SILVER NANORODS?

Nanorods are tiny molecules, even smaller than a single hair:

They are also capable of changing color over temperature and time.

Human Hair 18 µm

Nanorod 0.09 µm

Ag NA A NO

How Silver Nanorods Can Prevent Foodborne Illness

OBJECTIVES

- Improve procedure for optimal production
- Evaluate risks and concerns of using nanorods
- Design and construct a working prototype
- Modify laboratory protocol for continuous production
- Evaluate the cost of production for comparison with competitors

RESULTS

CONCLUSIONS

It is possible to make silver nanorods and control the quality, time and concentration properties

Nanorod labels are competitive in market applications

- Future applications
- Mass production
- Ethical considerations incorporated

Quantitative quality control addressed

Nanorod Label Prototype Label Front Cover Indicator

FUTURE WORK

- Continued lab research and scale-up design
- Enhance label design
- Test toxicity and disposal
- Market research
- Improve viability of existing prototype

Acknowledgements:

Professor Victor Perez-Luna IIT IPRO Office