The 21st Century Farm

Illinois Institute of Technology Chicago, IL

Professor: Blake Davis

Sponsor: John Edel & Kristin Ostberg of The Plant, LLC

Team Members:

Mohammad Al-Sabah Regine Antenor Adrien Binet Dawid Broda Jacob Davis Alexander Derdelakos Joseph Millham Jannette Ochoa Indira Oraziman Zachary Phillips Michael Gubser Fernando Guerrero Katarzyna Handzel Hyeon Im William Kling Frank Lockom Michael Schmidt Ivan Silvestre Claire Simmonds Jake Skaggs Konrad Sobon Philip Speroff Ralitza Todorova Travis Valmores Alexander Wiff

Where does Chicago get fresh produce in January?

• California - 2,200 miles

• Arizona - 1,800 miles

• Chile – 5,300 miles

Wouldn't it be nice to have...

- Fresh local produce all winter
- Local growing season extended 3 months
- Zero waste farming

Indoor Farming

- Controlled Environment
- No Chemical Treatment
- Fresher, Healthier Product
- Local Economic Boost
- Aid Regional Agriculture Stability

The Plant, LLC

- Indoor Farm
 - 100,000 sq. ft.
 3 story building
 3 acres
 - 50% farming operation

Our sponsors: John Edel & Kristin Ostberg, Chicago Center for Sustainable Manufacturing

The Team

• 25 students, 4 sub-teams, 8 disciplines

Our Mission: Make The Plant a Reality

- Agricultural systems
- Computer Control
- Building systems
- Marketing

Agricultural Systems

- Explore growing systems
- Expand prototype
- Introduce fish into Aquaponics system
- Monitor system performance

Prototype

Aquaponics System

Aquaponics System

Tilapia tank

Growing beds

Chicago High School for Agricultural Sciences

Aeroponics System

Aeroponics System

Drip System

Computer Control Team

- View/change environment variables
- Minimize maintenance of farm
- Gather operational data
- Integrate with building systems

This Semester

- Prototype the control system
 - Lights
 - Air temperature thermostat
 - Water temperature
 - Grow logs
 - Operations database

Progress

CMLD

Building Systems

- Wall construction design
 - Affordable
 - Sustainable
 - Volunteer friendly
- Lighting analysis
- Energy management analysis

Combined Heat & Power System

Lighting Systems

Metal Halide

Luxim Plasma

T5 High-Output Fluorescent

Marketing Team

- Double-check and expand the previous semester's work.
 - Lighting
 - Wholesale information
- Create a business plan for The Plant
 - Examine areas of interest to the sponsor concerning the business plan.
- Determine the cost of the growing systems

Viability Check

Initial production: 18.5k lbs/year

Initial construction costs paid in 5 years

\$70,000.00 \$60,000.00 \$50,000.00 **Projected Revenues** \$40,000.00 Construction Debt \$30,000.00 Linear (Projected Revenues) \$20,000.00 Linear (Construction Debt) \$10,000.00 \$0.00 2012 2013 2011 2014

Estimated Payback Time

Potential Markets

- Chicago Public Schools
 - Require 20% of all served food to be locally grown or produced.
- Restaurants
- Community Supported Agriculture (CSA) farms

Accomplishments

- Completed Aquaponics prototype
- Implemented and installed control system
- Developed wall and lighting systems
- Created marketing plan

The Next Step

- Moving and expanding the prototype into The Plant
- Continue exploring different growing systems
- Increase capabilities of control system
- Comprehensive evaluation of The Plant's existing building systems
- Create complete business model

Questions P

	Vendor & Manufacturer Provided Information			<u>Coverage Calculations (per</u> fixture)				Annual Costs				
Lamp Type	<u>Lamp</u> Bower		Lumens /	<u>Lume</u> (ns/W att	overage	Lumens	<u>No.</u> Fixtures in Growing	ai Energ	<u>Annual</u> Energy Used full	<u>Annual</u> Energy Cost	<u>per 5q.</u> Ft	<u>Total</u> <u>Annual</u> <u>Cost Per</u> Sq. Ft
т5 но	54	216	14 400	92.6	27.0	1,800.0	3,412.5	1419.	4,842,747	\$ 629,557	\$ 23.06	\$ 28.32
	54	210	14,400	92.0	27.0	1,600.0	5,412.5	 7064.	4,042,747	029,557 ¢	\$	\$
MH Horizontal	1000	1,075	45,630	117.0	40.0	1,825.2	1,092.0	5	7,714,452	1,002,879		
								1766.		\$	\$	\$
MH Horizontal	250	269	8,970	92.0	41.7	1,495.0	4,550.0		8,035,887	1,044,665		78.94
	200	266	17 505	115 0	0.0	702.0	1 002 0	1747. 3		\$	\$	\$
Luxim Plasma	200	266	17,595	115.0	8.0	703.8	1,092.0		1,908,096	248,052 ¢	9.09 \$	41.94 \$
MH Horizontal	400	430	15,600	100.0	40.0	1,560.0	2,730.0	2825. 8	7,714,452	,002,879	Ŧ	[⊅] 80.54

Straw Bale Cost Estimating

- 7' x 14' x (76 bays) =7448 square feet total area to be insulated (excluding the glazed area)
- Straw Bale Size: 18" x 14" x 36" to 24" x 18" x 48"
- Therefore, If using the smaller bales (18" x 14" x 36") horizontally so that it covers an area of 36"(L) x 14"(H) x 18"(D), the area covered by a single bale would be 3.5 square feet and a total of 2128 bales costing approximately \$8512 would be needed to cover the total area of the wall surface.
- If we use the smaller bales vertically so that it covers an area of 36"(L) x 18"(H) x 14" (D), the area covered by a single bale would be 4.5 square feet and a total of 1655 bales costing approximately \$6620 would be needed to cover the total area of the wall surface.
- If using the larger bales (24" x 18" x 48") horizontally so that it covers an area of 48"(L) x 18"(H) x 24"(D), the area covered by a single bale would be 6 square feet and a total of 1242 bales costing approximately \$4965 would be needed to cover the total area of the wall surface.

Jeans Insulation

Production Assumptions

	lbs/sf/ yr	\$/lb
Non-Mushroom Crops (Retail)	2.27	\$4.04
Non-MushroomCrops (Wholesale)	2.27	\$1.86
Mushrooms (Wholesale)	10.95	\$4.17
	fish/g al/yr	\$/fish
Tilapia (Restaurant)	1.4	\$7.39

Production/Distribution Schedule

Year	2011	2012	2013	2014
# of Bays	30	30	30	35
Sqft. of Growing Beds	4320	4320	4320	5040
Pounds of Product				
-Non-Mushroom Crops (Retail)	6374	6374	6374	6864
-Non-Mushroom Crops (Wholesale)	2452	2452	2452	3432
-Mushrooms (Wholesale)	4730	4730	4730	5519
# of Fish	4899	4899	4899	5715. 36

Farm Operating Projections

Year	2011	2012	2013	2014
Number of Bays	30 30		35	35
Gross Potential Revenue	\$79,4	\$79,4	\$92,6	\$91,4
	30.63	30.63	69.07	22.02
Shrinkage Loss(%)	25.00	23.00	21.00	19.00
	%	%	%	%
Effective Gross Revenue	\$59,5	\$61,1	\$73,2	\$74,0
	72.97	61.59	08.56	51.84
Cost of Operations	\$53,6	\$53,6	\$60,6	\$63,4
	88.00	88.00	36.00	78.40
-Initial Buildout	\$64,4 93.19			
-Buildout on Farm Revenues		\$	\$10,1 47.01	\$
		_		
Total Farm Operating Revenue	\$5,88	\$13,3	\$15,7	\$26,3
	4.97	58.56	84.12	57.56

