# The 21sis Century Farm 

## Illinois Institute of Technology Chicago, IL

Professor: Blake Davis
Sponsor: John Edel \& Kristin Ostberg of The Plant, LLC

## Team Members:

Mohammad Al-Sabah
Regine Antenor
Adrien Binet
Dawid Broda
Jacob Davis
Alexander Derdelakos Joseph Millham Jannette Ochoa

Indira Oraziman
Zachary Phillips
Michael Gubser
Fernando Guerrero
Katarzyna Handzel
Hyeon Im
William Kling
Frank Lockom
Michael Schmidt

Ivan Silvestre
Claire Simmonds
Jake Skaggs
Konrad Sobon
Philip Speroff
Ralitza Todorova
Travis Valmores
Alexander Wiff

## Where does Chicago get fresh produce in January?

## - California - 2,200 miles

- Arizona - 1,800 miles
- Chile - 5,300 miles


## Wouldn't it he nice to have...

- Fresh local produce all winter
- Local growing season extended 3 months
- Zero waste farming


## Indoor Farming

- Controlled Environment
- No Chemical Treatment
- Fresher, Healthier Product
- Local Economic Boost
- Aid Regional Agriculture Stability


## The Plant, LLC

- Indoor Farm
- 100,000 sq. ft. 3 story building 3 acres
- 50\% farming operation


Our sponsors: John Edel \& Kristin Ostberg,
Chicago Center for Sustainable Manufacturing

## The Team

- 25 students, 4 sub-teams, 8 disciplines

> Our Mission: Make The Plant a Reality

- Agricultural systems
- Computer Control
- Building systems
- Marketing


## Agricultural Systems

- Explore growing systems
- Expand prototype
- Introduce fish into Aquaponics system
- Monitor system performance


## Prototype



## Aquaponics System



5
MAME
CMMD

## Aquaponics System

Tilapia tank


## Growing beds



Chicago High School for Agricultural Sciences

## Aeroponics System



## Aeroponics System



## Drip System



## Computer Control Team

- View/change environment variables
- Minimize maintenance of farm
- Gather operational data
- Integrate with building systems


## System Architecture



## This Semester

- Prototype the control system
- Lights
- Air temperature thermostat
- Water temperature
- Grow logs
- Operations database


## Progress

Previous Semester


This Semester


## Building Systems

- Wall construction design
- Affordable
- Sustainable
- Volunteer friendly
- Lighting analysis
- Energy management analysis



## Comhined Heat \& Power System



## Lighting Systems



Metal Halide


## Marketing Team

- Double-check and expand the previous semester's work.
- Lighting
- Wholesale information
- Create a business plan for The Plant
- Examine areas of interest to the sponsor concerning the business plan.
- Determine the cost of the growing systems


## Viahility Check

- Initial production: 18.5k lbs/year
- Initial construction costs paid in 5 years


## Estimated Payback Time



## Potential Markets

- Chicago Public Schools
- Require $20 \%$ of all served food to be locally grown or produced.
- Restaurants
- Community Supported Agriculture (CSA) farms



## Accomplishments

- Completed Aquaponics prototype Implemented and installed control system
- Developed wall and lighting systems
- Created marketing plan


## The Next Step

- Moving and expanding the prototype into The Plant
- Continue exploring different growing systems
- Increase capabilities of control system
- Comprehensive evaluation of The Plant's existing building systems
- Create complete business model


## Questions ?



| Lamp Type | Vendor \& Manufacturer Provided Information |  |  | Coverage Calculations (per fixture) |  |  |  | Annual Costs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lamp Power (Watts/L amp) | Total <br> Power <br> (Watts / <br> Fixture) to <br> Run Light <br> (from <br> Sheet <br> "Heating" <br> G8) | Usable Lumens Fixture | Lume att | Watts/C overage [W/sq. ft] | Lumens <br> Sq. ft | No. <br> Fixtures <br> in <br> Growing <br> Area | Annu al <br> Energ <br> Y <br> Used <br> [kW] | Annual <br> Energy Used full install [kW-hr] | Annual Energy Cost | Annual <br> Energy <br> Cost <br> per Sq. <br> Ft. <br> Growin <br> g Area | Total <br> Annual <br> Cost Per <br> Sq. Ft |
| T5 HO | 54 | 216 | 14,400 | 92.6 | 27.0 | 1,800.0 | 3,412.5 | $\begin{gathered} 1419 . \\ 1 \end{gathered}$ | 4,842,747 | $\begin{gathered} \$ \\ 629,557 \end{gathered}$ | $\begin{aligned} & \hline 23.06 \\ & \hline \end{aligned}$ | \$ 28.32 |
| MH Horizontal | 1000 | 1,075 | 45,630 | 117.0 | 40.0 | 1,825.2 | 1,092.0 | $\begin{gathered} 7064 . \\ 5 \end{gathered}$ | 7,714,452 | $\begin{gathered} \$ \\ 1,002,879 \end{gathered}$ | ${ }_{36.74}$ | \$ 99.31 |
| MH Horizontal | 250 | 269 | 8,970 | 92.0 | 41.7 | 1,495.0 | 4,550.0 | $\begin{gathered} 1766 . \\ 1 \\ \hline \end{gathered}$ | 8,035,887 | $\begin{gathered} \$ \\ 1,044,665 \end{gathered}$ | $\$_{38.27}$ | \$ 78.94 |
| Luxim Plasma | 200 | 266 | 17,595 | 115.0 | 8.0 | 703.8 | 1,092.0 | $\begin{gathered} 1747 . \\ 3 \end{gathered}$ | 1,908,096 | $\begin{gathered} \$ \\ 248,052 \end{gathered}$ | $9.09$ | \$ 41.94 |
| MH Horizontal | 400 | 430 | 15,600 | 100.0 | 40.0 | 1,560.0 | 2,730.0 | $\begin{gathered} 2825 . \\ 8 \end{gathered}$ | 7,714,452 | $\begin{gathered} \$ \\ 1,002,879 \end{gathered}$ | $\$_{36.74}$ | \$ 80.54 |

## Straw Bale Cost Estimating

- 7 ' $\times 14^{\prime} \times(76$ bays $)=7448$ square feet total area to be insulated (excluding the glazed area)
- Straw Bale Size: 18 " $\times 14^{\text {" }} \times 36$ " to $24^{\text {" }} \times 18^{" 6} \times 48$ "
- Therefore,

If using the smaller bales ( 18 " $\times 14$ " $\times 36$ ") horizontally so that it covers an area of 36 "(L) $\times$ $14 "(H) \times 18 "(D)$, the area covered by a single bale would be 3.5 square feet and a total of 2128 bales costing approximately $\$ 8512$ would be needed to cover the total area of the wall surface.

- If we use the smaller bales vertically so that it covers an area of 36 " $(\mathrm{L}) \times 18$ " $(\mathrm{H}) \times 14$ " (D), the area covered by a single bale would be 4.5 square feet and a total of 1655 bales costing approximately $\$ 6620$ would be needed to cover the total area of the wall surface.
- If using the larger bales ( 24 " x 18" x 48") horizontally so that it covers an area of 48"(L) x $18 "(H) \times 24 "(D)$, the area covered by a single bale would be 6 square feet and a total of 1242 bales costing approximately $\$ 4965$ would be needed to cover the total area of the wall surface.


## Jeans Insulation



## Production Assumptions

|  | $\mathrm{lbs} / \mathrm{sf} /$ | $\$ / \mathrm{lb}$ |
| :--- | :--- | :--- |
| Non-Mushroom Crops (Retail) | 2.27 | $\$ 4.04$ |
| Non-MushroomCrops (Wholesale) | 2.27 | $\$ 1.86$ |
| Mushrooms (Wholesale) | 10.95 | $\$ 4.17$ |
|  | $\mathrm{fish} / \mathrm{g}$ <br> $\mathrm{al} / \mathrm{yr}$ | $\$ / \mathrm{fish}$ |
| Tilapia (Restaurant) | 1.4 | $\$ 7.39$ |

## Production/Distribution Schedule

$\left.\begin{array}{lllll}\hline \text { Year } & 2011 & 2012 & 2013 & 2014 \\ \hline \text { \# of Bays } & 30 & 30 & 30 & 35 \\ \hline \text { Sqft. of Growing Beds } & 4320 & 4320 & 4320 & 5040 \\ \hline \text { Pounds of Product } & & & & \\ \hline \text {-Non-Mushroom Crops (Retail) } & 6374 & 6374 & 6374 & 6864 \\ \hline \begin{array}{l}\text {-Non-Mushroom } \\ \text { (Wholesale) }\end{array} & \text { Crops } & 2452 & 2452 & 2452\end{array}\right) 3432$.

# Farm Operating Projections 

| Year | 2011 | 2012 | 2013 | 2014 |
| :---: | :---: | :---: | :---: | :---: |
| Number of Bays | 30 | 30 | 35 | 35 |
| Gross Potential Revenue | $\begin{aligned} & \$ 79,4 \\ & 30.63 \end{aligned}$ | $\begin{aligned} & \$ 79,4 \\ & 30.63 \end{aligned}$ | $\begin{aligned} & \$ 92,6 \\ & 69.07 \end{aligned}$ | $\begin{aligned} & \$ 91,4 \\ & 22.02 \end{aligned}$ |
| Shrinkage Loss(\%) | $\begin{aligned} & 25.00 \\ & \% \end{aligned}$ | $\begin{aligned} & 23.00 \\ & \% \end{aligned}$ | $\begin{aligned} & 21.00 \\ & \% \end{aligned}$ | $\begin{aligned} & 19.00 \\ & \% \end{aligned}$ |
| Effective Gross Revenue | $\begin{aligned} & \$ 59,5 \\ & 72.97 \end{aligned}$ | $\begin{aligned} & \$ 61,1 \\ & 61.59 \end{aligned}$ | $\begin{aligned} & \$ 73,2 \\ & 08.56 \end{aligned}$ | $\begin{aligned} & \$ 74,0 \\ & 51.84 \end{aligned}$ |
| Cost of Operations | $\begin{aligned} & \$ 53,6 \\ & 88.00 \end{aligned}$ | $\begin{aligned} & \$ 53,6 \\ & 88.00 \end{aligned}$ | $\begin{aligned} & \$ 60,6 \\ & 36.00 \end{aligned}$ | $\begin{aligned} & \$ 63,4 \\ & 78.40 \end{aligned}$ |
| -Initial Buildout | $\begin{aligned} & \$ 64,4 \\ & 93.19 \end{aligned}$ |  |  |  |
| -Buildout on Farm Revenues |  | \$ | $\begin{aligned} & \$ 10,1 \\ & 47.01 \end{aligned}$ | \$ |
| Total Farm Operating Revenue | $\begin{aligned} & \$ 5,88 \\ & 4.97 \end{aligned}$ | $\begin{aligned} & \$ 13,3 \\ & 58.56 \end{aligned}$ | $\begin{aligned} & \$ 15,7 \\ & 84.12 \end{aligned}$ | $\begin{aligned} & \$ 26,3 \\ & 57.56 \end{aligned}$ |

