

To transform the space on the 4th floor of Machinery Hall into a completely self-sustaining laboratory environment.

Solar Thermal

Ventilation

PROBLEM:

- No efficient heating system
- No running hot water supply

OBJECTIVE

- Design/build solar thermal collector
- Test collector to improve design

METHODOLOGY:

 Researched most efficient and cost effective system

Solar Thermal

Ventilation

METHODOLOGY:

 Chose solar thermal collector design

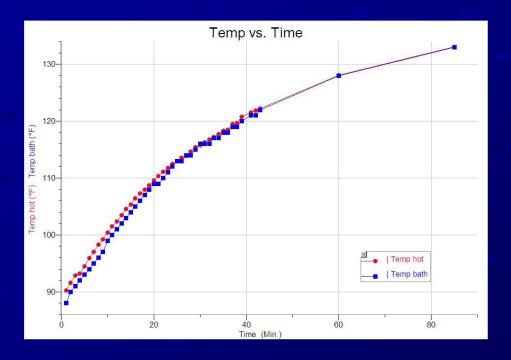
Solar Thermal

Ventilation

METHODOLOGY:

Constructed solar thermal collector

Solar Thermal


Ventilation

METHODOLOGY:

Testing solar thermal collector

Energy Cart

Ventilation

RESULTS:

- Cost less than \$100 per collector
- 330 watts of heat at 115°F
- Thermal efficiency of 26%

OBSTACLES:

- Budget
- Acquiring materials
- Transporting finished collector
- Testing design

LONG TERM GOALS:

Larger thermal storage capacity
Hot running water
Solar Air Conditioning
Design backup system

PROBLEM:

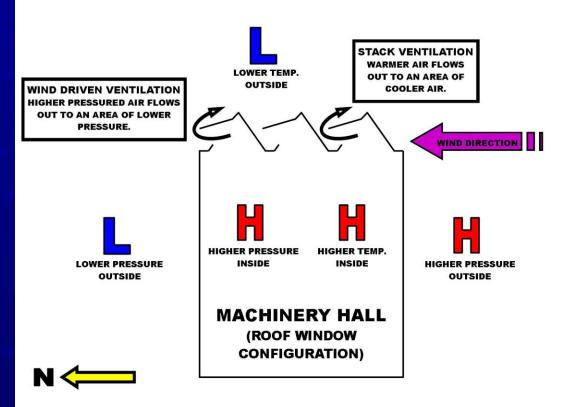
- No energy-efficient cooling system
- Potential for natural ventilation

OBJECTIVES:

- Design automatic window system
 - Mechanical
 - Electronic
- Determine cost effectiveness

Energy Cart

Solar Thermal



Ventilation

METHODOLOGY:

- Researched the effectiveness of natural ventilation
 - Stack
 - Wind Driven

METHODOLOGY:

 Designed mechanical system for operating windows

Built mockup of design

Solar Thermal

METHODOLOGY:

- Designed electronic program
 - Writing code
 - Setting parameters

COST OF INSTALLATION

Item	Item Type	Price
ArduinoUSB Board	Inside Unit	\$29.95
Breadboard Mini Self-Adhesive Back	Inside Unit	\$3.95
Humidity and Temperature Sensor - SHT15 Breakout	Inside Unit	\$41.95
2xbees (Wireless Upgrade)	Inside/Outside Unit	\$20.00
xB Shield (Wireless Upgrade)	Inside Unit	\$20.00
Solar Panel (Wireless Upgrade)	Outside Unit	\$30.00
Solar Cell Large	Outside Unit	\$34.95
USB Weather Board	Outside Unit	\$124.95
SCP1000 Gasket	Outside Unit	\$0.95
Actuator	Mechanical Unit	\$125.00
Motor Controller	Mechanical Unit	\$48.00
Adapter	Mechanical Unit	\$10.00
TOTAL COST OF PARTS:		\$489.70

METHODOLOGY:

- Conducted cost analysis
 - Straight parts

Energy Cart

Solar Thermal

Ventilation

OBSTACLES:

Did not know wind direction

- Actual windows not operable
- Difficult to define parameters without field research

LONG TERM GOALS:

- Conduct more research to improve operating parameters
- Consider additional energy-efficient cooling methods
- Look into repairing/replacing windows in order to install system

Solar Thermal

PROBLEM:

Limited energy storage capacity
ZEL Cart requires AC power from grid
Limited distribution of AC power in the lab

OBJECTIVES:

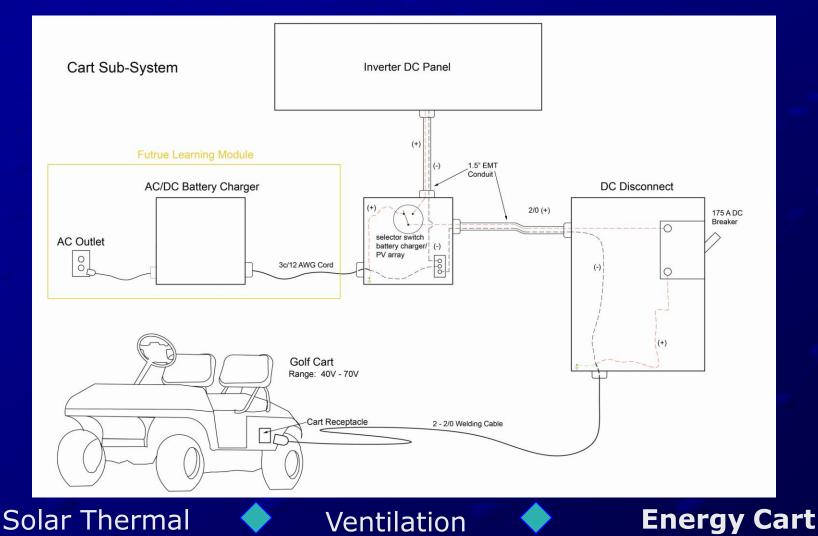
- Design and install a sub-system by which the ZEL cart could be connected to the energy management system
- Double the system energy storage capacity by adding the cart's 48 Volt battery bank to the existing 48 Volt bank
- Create a "green" method for recharging the cart
- Prepare the way for renewable, mobile, AC power
- Create user friendly documentation of the system

Solar Thermal


Ventilation

METHODOLOGY:

 Analyzed and documented the current system



Solar Thermal

Ventilation

METHODOLY: Designed sub-system to connect the cart to the system

METHODOLOGY:

Installed and tested the sub-system

METHODOLOGY: Doubled system energy storage capacity

OBSTACLES:

Unanticipated high current design issues
Understanding the cart inter-connect design
Budget constraints
Loss of the sub-group leader during week 10

LONG TERM GOALS:

Continue to improve and increase battery storage
Add an DC/AC inverter to cart
Add existing AC/DC charger to the sub-system
Add new uses to the existing system

IPRO 337: Zero Energy Lab CONCLUSION

WHAT WE ACCOMPLISHED:

- Created Solar Thermal Collector
- Designed Automated Window Unit for Natural Ventilation
- Connected ZEL Cart Doubled Energy Storage
- Introduced new energy technologies to the ZEL

Solar Thermal

ACKNOWLEDEMENTS:

- Nancy Hamill-Governale, Faculty Advisor
- Geno Gargas, Zero Energy Lab Technician
- Konrad Grabowski, IIT Facilities, Electrician
- Anderson Power Products, Sterling MA
- Outback Power Systems, Arlington WA
- Sun Xtender Batteries, West Covina CA
- Manuel Garcia, IIT Facilities, Electrician
- Ray DeBoth, Retired Engineer
- Bridget Ford, IO Lighting
- David Lavan, Elara Engineering

QUESTIONS?

Solar Thermal

