

Development Progress

Created

Formulated

$-PL^3$	bh^3	4 <i>PL</i>
<u> </u>	12	$-\delta bh$

Preliminary Materials Testing				
Materials	Modulus of Elasticity [gpa]	YieldStrength [mpa]	Modulus of Ressilience [mpa]	
316 Stainless Steel	190	200	0.11	
Medium carbon steel • (0.3 to 0.6% carbon)	206	310	0.23	
Titanium Alloy • (Niobium, 30%) • (Titanium, 70%)	70	500	1.8	
High Carbon Spring Steel • (0.7 to 1.0% carbon)	210	580	2.2	
420 stainless steel	200	1400	4.9	

Fish bites down on the hook

Angler sets the hook

HOOK TECHNOLOGY

Mock-ups

Shown above from left to right: team developed Mock1, team developed Mock2, and a standard treble hook for comparison.

Mock-up Testing

- Bending (shown below)
- Corrosion Resistance
- Customer Satisfaction
- Engagement Mechanism
- Fatigue
- Snag
- Tensile (shown below)