
Fuel Cell

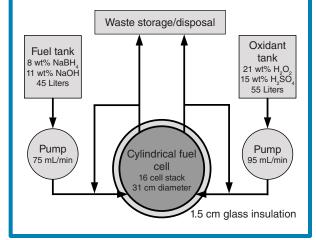
The fuel and oxidant selected for this system was a sodium borohydride fuel and hydrogen peroxide oxidant. All relevant reactions are as follows:

Exact system specified using:

- Chemical reaction produces no gases
- Minimal environmental impact
- Power requirements estimated by propulsion group (2 kW)
- Polarization data from literature

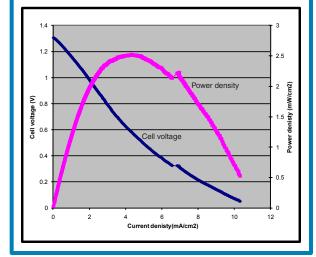
Experiments

Creation of a fuel cell with a 97% Au/3% Pt on carbon catalyst.



REATION OF THE CATALYST ELECTRODE ASSEMBLY

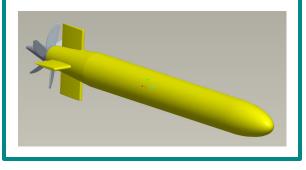
Literature Design Overview

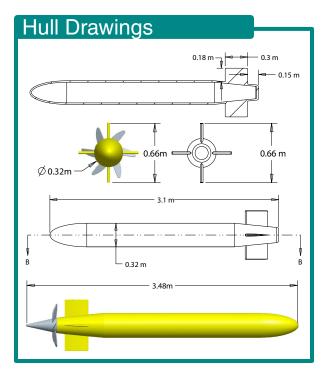

Fuel Cell Design Results

Number of cells	16
Cell operating voltage	1.5 V
Fuel cell length	29 cm
Fuel cell volume	23 L
Cell power output	2 kW
Cell voltage	24 V
Energy	~40 kWh

Experiments & Results

Performance of second fuel cell using Nafion 117 with higher flow rates. Outperformed thinner Nafion 112, which was more suited for gas reactions.




Propulsion Model

• Design based off of US Navy's Mk. 48 Mod. 7 torpedo currently in active duty with all US Navy nuclear attack submarines (SSNs) and nuclear balistic missile submarines (SSBNs).

UUV Designed Specifications

Designed operating depth	1 km
Cruise speed	1 m/s
Max speed	~3 m/s
Dry weight	~225 kg
Range (round trip)	70 km

IPRO Goals

Investigate potential use of fuel cell to power unmanned underwater vehicle (UUV)

o Replace the use of conventional battery power

o Research and design fuel cell power system

> Design centered on a sodium borohydride (NaBH₄) fuel cell

- > Hydrogen peroxide oxidant (H_2O_2)
- Design a complete submersible package including:

o Dimensions

- o Control surfaces
- o Material requirements

Fuel Cell Background

- Unmanned Underwater Vehicles (UUV) operate in conditions impossible for manned submarines o Naval applications for UUV's include reconnaissance and sabotage
- Current fuel cell technology o Hydrogen polymer electrolyte membrane fuel cells most common o Research for UUV applications focus on NaBH, fuel cell o Two to^⁴three times more efficient than internal combustion engines
- NaBH, fuel cell technology o Relatively low environmental impact o Liquid reactions produce no gases in cell

Propulsion Background

- Survey of current technology
- Design a vessel around the propulsion svstem
 - > Theoretical design
 - > Practical design
- Fully specify and model a practical UUV > Modeled in Pro/E

IPRO 349 - The 349er's

Back row: Chris Chock, Dr. Vijay Ramani, Kevin Abankwa, Kamaldeen Olorunoje, Ethan Baughey, Nic Sansone, Ray Ballard, Brian Olson

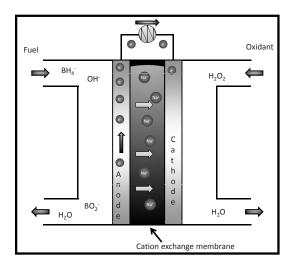
Middle row: El Kenig, Dan Miladinovich, Jaya Singh, Sahar Ashrafi, Matt Chaffee, Moses Cho, Jainam Shah, Yukiya Takada Front row: Chris Wolcott, Suk Hwan Yun, Jenn Guilfoyle, Matt Hagopain, Trang Nguyen, Cheryl Mukai, Marcus Choy

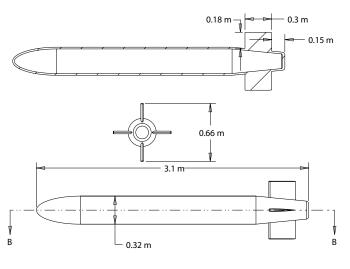
CHE 296

Kevin Abankwa Ethan Baughey Matthew Chaffee Moses Cho Matthew Hagopain Kamaldeen Olorunoje

CHE 496

Sahar Ashrafi Ray Ballard Chris Chock Jennifer Guilfoyle


IPRO 349


Marcus Choy Elezar Kenig Chieh Luo

IPRO 349: Fuel Cells for Unmanned Underwater Vehicles (UUVs) cooperated

with CHE296/496 to create a fuel cell poweplant and complete UUV design intended for US Naval applications.

IPRO 349 Fuel Cells for Unmanned **Underwater Vehicles**

Spring 2010 Dr. Vijay Ramani, IIT ChBE http://mypages.iit.edu/~ipro349s10

Suk Hwan Yun

Cheryl Mukai

Chris Wolcott

Brian Olson

Nic Sansone

Yukiya Takada

Java Singh

Olakunle Olorunoje

Daniel Miladinovich

Trang Nguyen Jainam Shah