# IPRO 326 Steel Bridge



# The Mission

The purpose of this IPRO is to simulate a real world design project by producing a scaled steel bridge. This IPRO showcases the actual process required to erect a structure. Students examine the designing aspect as well as the business aspect of such an operation.

# The Cause

This IPRO is a contribution to our school's own ASCE chapter. The bridge designed will be fabricated and assembled in the following semester and entered into the ASCE/AISC Student Steel Bridge Competition.

# **Competition Scenario**

A century-old highway bridge that spans a scenic river must be replaced. The bridge carries traffic serving residences and resorts that are the foundation of the economy for this rural region. A quick replacement is necessary because no other crossing is available for miles. The state Department of Transportation (DOT) has requested design/build proposals for replacing the existing bridge.

# **Motivation for Design**

### A deck bridge

### Clearance under the bridge

### Material used is steel

# **Steel Bridge Crew**

Students involved with IPRO 326 are aspiring:

- Civil Engineers
- Architects
- Construction Managers
- Mechanical Engineers
- Architectural Engineers
- & Business majors

### Brings the aspiring professionals together

### Replicates real world work place

### People interaction





- Read the rules of the ASCE Steel Bridge Competition
- Discussed and interpreted the rules to begin designing regulations
- Teams each came up with a preliminary design for the bridge and members, along with timeline and project plan.

# Following the Rules

Rules for the ASCE competition regulate certain areas such as: Building envelope

- Member sizes
- Connection design
- Assembly of the bridge
- Loading requirements

# **Building Envelope**

 Bridge must exist inside within given dimensions

This excludes many design options



# Member Requirements

All members must fit into a 6"x6"x42" box
A member must retain its shape, dimensions, and rigidity during timed construction and load testing.
Hinged, jointed, articulated, and telescoping members are prohibited

# Connections

### Each connection must have one fastener



# Loading the Bridge

Initial vertically load tested

Loading positions are randomly selected



# Loading the Bridge

Also, laterally load tested

### Load position is known



# Initial Project Plan

| Project Budget     |                                 |     |          |
|--------------------|---------------------------------|-----|----------|
| Items name         | Specifications                  | Cos | st       |
| Registration:      | School                          | \$  | 125.00   |
|                    | Individuals                     | \$  | 810.00   |
| Hotel:             | 7 Rooms @ \$80/night * 3 nights | \$  | 1,680.00 |
|                    | Taxes @ 10.75%                  | \$  | 180.60   |
| Travel:            | Gas Reimbursement for driving   | \$  | 1,164.00 |
| Fabrication:       |                                 | \$  | 4,000.00 |
|                    | Connectors                      |     |          |
|                    | Tools                           |     |          |
|                    | Wooden forms                    |     |          |
|                    | Hard Hats                       |     |          |
| Presentation:      |                                 | \$  | 50.00    |
|                    | Posters                         |     |          |
|                    | Printing                        |     |          |
| Bridge Aesthetics: |                                 | \$  | 200.00   |
|                    | Paint                           |     |          |
|                    | Decals                          |     |          |
| Grand Total:       |                                 | \$  | 8,209.60 |





- Created Budget
- Marketing for the project
- Contacted possible sponsors

- Discussed potential bridge layouts
- Ideas for member shapes and sizes
- Preliminary connection design
- Considered likely dilemmas and possible critical spots

# **Design Approach**

Find critical loading points

Simple load analysis

Moment diagrams

## **Moment Diagrams**



# Preliminary Bridge Designs

Several bridge designs were proposed

Constructability was key



# Preliminary Bridge Designs

#### Web members were carefully considered





# SAP 2000 TeamConducted load analysis

# Finalize geometry

Length of overall bridge Final shape

Number and length of members

Lateral bracing

# Analysis of Bridge

 Determining structural integrity using SAP2000

 Difficulties included determining the proper way in which to model connections and releases

Determines best weight to deflection ratio

# Analysis

Analysis of varies load possibilities was done on the proposed bridge design until the correct sized members and connections were perfected.



# **Bridge of Choice**

The final selected bridge consists of simple truss with both the upper chord and lower chord connecting to the pier.



## Pier Design/Oversight

- Proposed connection/design for the piers.
- Made a simple model to show the slipping of the feet on the pier
- Placed an overview of the rules on Igroups that can be viewed should there be any questions

# Pier Design



The pier was a simple design. This inevitably cut down on weight
 Needs to support bridge while building

# **Connection Design**

Plan the position of connecting members
 Decide location of bolts



# **Connection Design**



# Shop Drawings

 Detailed drawings of individual members

 All dimensions are clearly marked so fabricators can put the members through production

 Each drawing is assembled in a title block to label where it belongs on the bridge



3, 5,



# **Construction Planning**

Develops a plan to assemble the bridge

Reviewed ASCE competition rules to See how it will allow us to function

Develop a time frame of construction

In the purchase of tools and materials

Proposed Assemblage of the Bridge












. ...







2.3




















































































## **Ethical Issues**

 Quebec Bridge Collapse
Minnesota Bridge
Kansas City Hyatt



## Accomplishments

- The progression of this operation has advanced well beyond last years by this time.
- Giving ASCE plenty of time for preparation for the competition
- This allotted time will ensure our success at the ASCE/AISC Steel Bridge Competition

