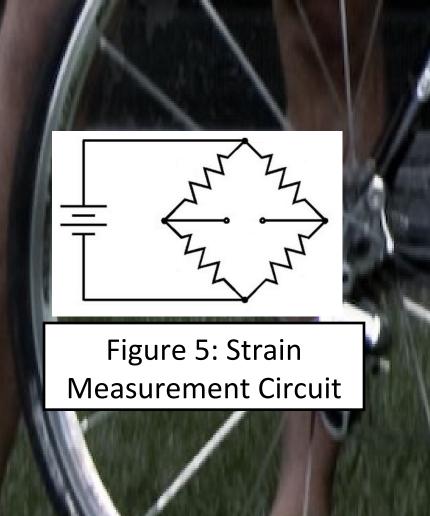

IPRO 497-324: Power Measurements For Road Bike

Background


- Current systems measure power via:
- Crankset (strain in crankset)
- Free hub (strain in rear wheel)
- Chain (vibration & speed of chain)
- Opposing force (e.g. gravity, drag, acceleration, wind velocity)
- Strain gauges measure the stretch in the material (strain), which can be related to torque, from which power can be calculated.

Power =
$$T\varpi = \sum_{i=1}^{n} C_i S_i \varpi$$

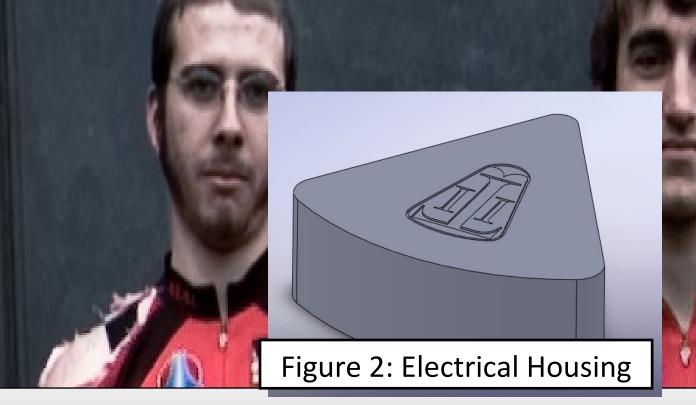
= $[Torque][Angular Velocity]$

Problem

- Demand for power measuring device
- Current systems are expensive, and can not be retrofit
- •Strain gauges are an inexpensive, practical solution
- Advanced Signal Processing
- •Wireless Data Transmission

Objective

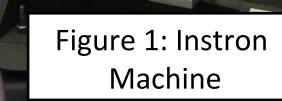
- Develop a configuration of strain gauges
- Develop an electronic processing unit for post-processing the strain gauge signals
- Package the system


Results

- Strain readings linear with torque
- Determination of crank angle necessary
- Proposed system is cheaper than competition

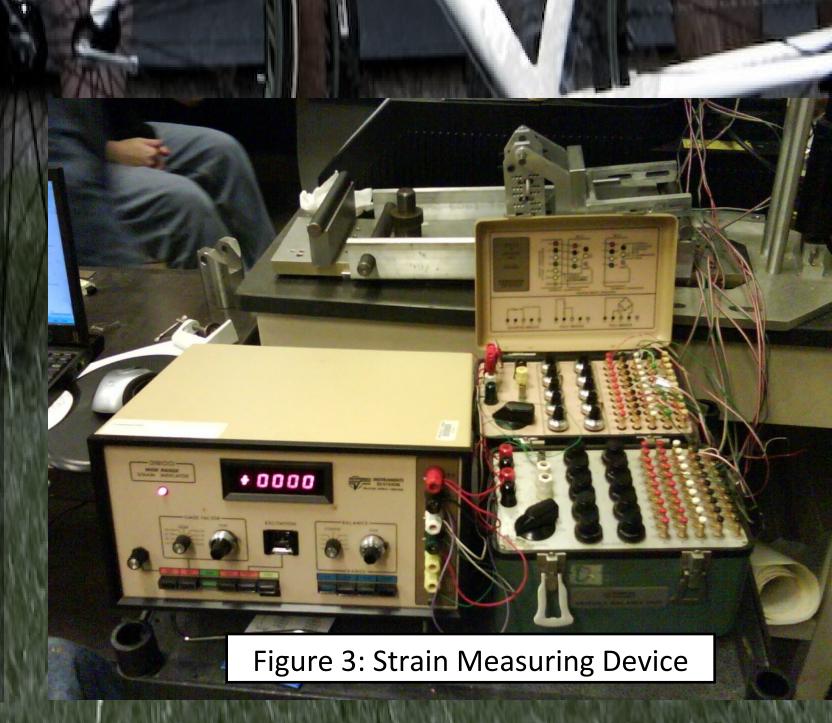
Proposed Circuit Estimated Cost			
Small Quantity Order (not including manufacturing/production costs)			
	Quantity	Cost Each	Total
Microchip 18F2320	1	\$8.65	\$8.65
74HC154 Decoder	1	\$0.96	\$0.96
INA122 Amplifier	1	\$5.56	\$5.56
ADG811 Analog Switch	3	\$3.40	\$10.20
LP3878 Voltage Regulator	1	\$2.50	\$2.50
Precision 350 Ohm Resistor	3	\$11.52	\$34.56
MAX4475 Op-Amp	2	\$0.72	\$1.44
nRF2401A (ANT+ Chip)	1	\$4.75	\$4.75
Supporting Components -			
Resistors/Capacitors		\$5.00	\$5.00
SRAM S900 Crankset	1	\$180.00	\$180.00
Strain Guages	1	\$442.50	\$442.50
Housing	1	\$100.00	\$100.00
Battery	1	\$3.00	\$3.00
Total Estimated Cost			\$799.12
Quarq System Cost			\$1,525.00
Costs will go down due to:	higher quantity orders		
	use of all surface mount components		

Future Plans


- •RPM measurement
- More strain gauge measurements
- Reverse engineer Quarq spider/casing
- Optimize battery life/cost of end product
- Design electrical housing and spider
- Turn into a cycling product

Acknowledgments

- Dynastream/Garmin
- •Quarq
- •Instron
- Micro-Measurements


Figure 3: Prototype Circuit

lethodology

Research Quarq Cinco, Garmin, strain gauges

Figure 4:Strain Gauge Layout

- Attach strain gauges to spider
- Measure Strain, Torque and Angle
- Analyze strain data
- Relate Strain to voltage
- Learn to program ANT+ system
- Design Prototype Casing for electronics
- Design Circuit to measure voltage

Advisors Prof. Rempfer

Prof. Rempfer

Mechanical Team

Nathan Knopp – Leader

Crystal Jankhot– Team Lead

Nathan Knopp – Leader Crystal Jankhot– Team Leader Brandon Marcellis Ryan Ruidera Henrietta Tsosie

Prof. Mostovov Electrical Team

Byan Kaminski - Leader Sergio Aguilar Patrick Becker Daniel Gonzalez David Poli Jaewon Yoo Arkadiusz Ziomekr