IPRO 324 Power Measurement for Road Bikes Midterm Presentation

The Problem

- Cyclists have great interest in measuring their mechanical power output on the bicycle
- Practice/Performance optimization
- Existing available solutions
 - Expensive
 - Can not be retrofit
- Strain gauges are an inexpensive practical solution
- Require advanced signal processing
- Signal needs to be transmitted wirelessly to a bicycle computer

Team Structure

Team Lead Crystal Lybolt

Mechanical Team

Nathan Knopp – Lead Crystal Jankhot Brandon Marcellis Ryan Ruidera Henrietta Tsosie

- Apply and test strain gauges on various areas of the bike's spider
- Analyze results of strain gauge testing
- Reverse engineer commercial device
- Design device to measure bike RPM

Electrical Team

Bryan Kaminski - Lead Sergio Aguilar Patrick Becker Daniel Gonzalez David Poli Jaewon Yoo Arkadiusz Ziomek

- Develop microcontroller and circuitry for strain gauges and RPM measurements
- Interface standard bike computer with measurement circuitry
- Reverse engineer commercial device

Some Background

Sram Force Crank Set

Quarq Cinco Power Measurement Spider

Garmin 705 Bicycle Computer

Objective/Goals of the Project

- Develop a configuration of strain gauges
 - Accurately measure the output of the strain gauges under various load conditions
 - Crank angle
 - Direction of applied force
 - Point of force application
 - Left pedal
 - Right pedal
 - Both left and right pedal
- Develop an electronic processing unit for post-processing the strain gauge signals
 - Implement an algorithm to calculate the applied torque at the bicycle crankset
 - Transmit the data wirelessly to the Garmin Edge 705 using the ANT+ protocol
 - Must be power efficient
- Package the system
 - Must work under realistic conditions
 - Needs to conform to the space requirements associated with a bicycle

Progress Thus Far

- Mechanical
 - Strain gauges added to outside of spider
 - Strain gauges were on different locations prior to beginning of semester
 - Moved to outside to try to minimize effects on strain due to bending, torsion and other sources
- Electrical
 - Work with Garmin 705 and Quarq Cinco
 - Paired the Quarq to send power signal to the Garmin
- General
 - Research
 - Patent for Quarq device
 - ANT+

Obstacles Dealt With

- Reverse engineering the Quarq
 - Unable to without destroying the casting
 - any reverse engineering will only involve examining the communications between the Garmin and Quarq computer.
- Finding times to meet outside class
 - Could not meet in Lab on Fridays
 - Two sessions scheduled on Tuesday (morning and night)
- Application of Strain gauges
 - Group had no experience
 - Had a session in which the Mechanical members learned and did test runs

What Lies Ahead

- Mechanical Aspects
 - Need to develop a configuration of strain gauges under various load conditions
 - Measure the torque accurately at the bicycle crank
- Electrical Aspects
 - Need to develop an algorithm to process the strain gauge signals for power measurement
 - Design a power circuit that optimizes the battery lifetime
 - Networking between a bicycle computer (Garmin 705) and other electronic processing and transmission units
- Financial Aspects
 - Requirement to make a product cheaper than existing products

Questions?

Suggestions?

