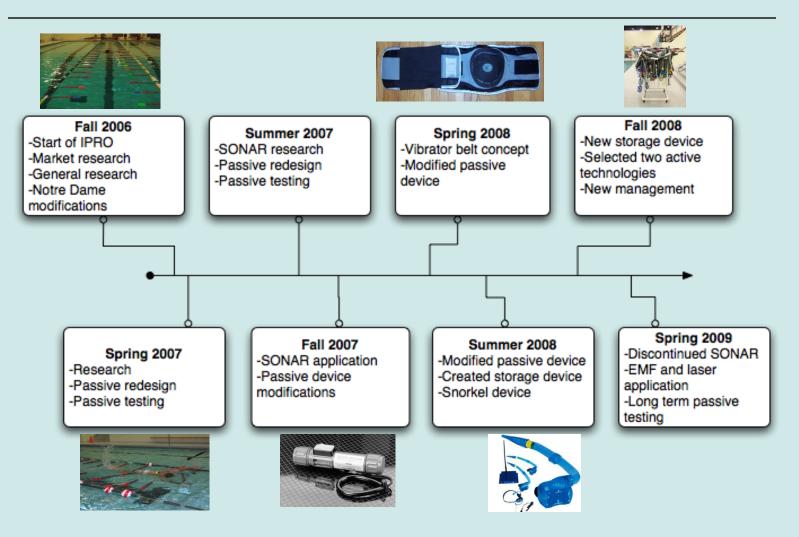

BUOY

IPRO 310

Assistive Technology for Blind and Visually Impaired Swimmers *A vision for blind swimmers*

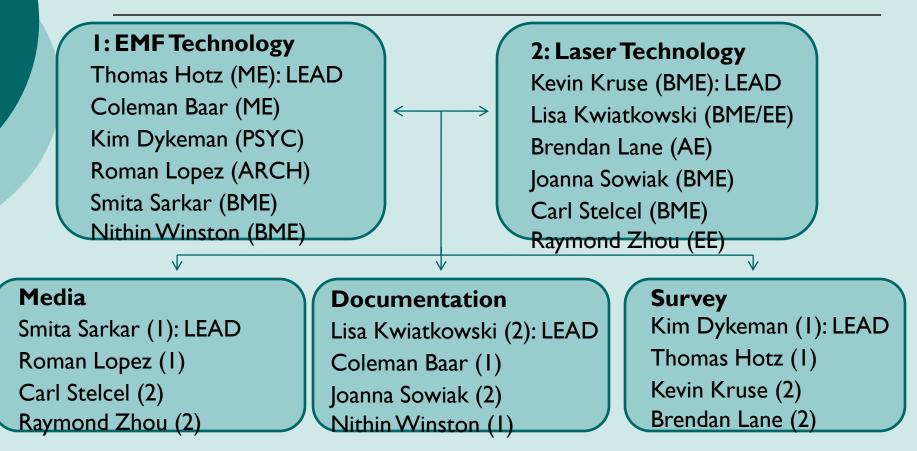
Overview


- Background
- History/ Mission/ Team Organization
- Obstacles/ Solution Strategy
- Ethical Issues
- O Survey/ Community Outreach
- Technologies
- Accomplishments
- O Next Steps

Background

- Abandonment of assistive technology
 - Lack of community involvement in development
 - Up to 80% abandonment rate of assistive technology (Michigan Department of Education)
- National awareness of physical fitness
 - Lack of assistance leads to a sedentary lifestyle
- 7.8 million blind and visually impaired (BVI) people in the US (US Census)

1.8 million completely blind people (US Census)


History

Mission

"To develop, test, and implement assistive technology with the community that promotes safety and improves independence of blind and visually impaired (BVI) swimmers."

Team Organization

Faculty and Advisors

Frank Lane (Rehab Psych), Ken Schug (Chem), Phillip Troyk (BME)

Obstacles

- Lab Access
- Electronics experience
- Experience with people with disabilities
- Abbreviated semester

Solution Strategy

- Brainstorming
- Iterative prototyping
- Activities that simulate disabled lifestyle
 - Communication problems
 - Blindfold exercise
- User-centered design
 - Surveying
 - Socializing
- O Research/Consultants
- Dynamic and interactive team structure

Ethical Issues

- Beneficence
- Non-malfeasance
- O Autonomy
- Justice
- Fidelity

Survey

- Survey Identified the following as most important
 - Device location
 - Ease of use

High interest in our assistive technology
Primarily for recreation
Vibrating wristband well received

- Other concerns included
 - Safety
 - Pool availability

Website

IPRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

IPRO 310

INTRODUCTION

TECHNOLOGIES

CHICAGO LIGHTHOUSE

HISTORY

SURVEY

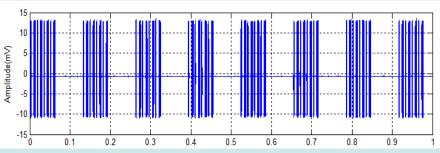
ABOUT US

Devices that Assist Blind & Visually-Impaired individuals in Swimming and Other Exercise Activities

A vision for blind swimmers

.:Introduction

The problem posed with blind and visually impaired (BVI) swimmers is one of safety and independence. BVI individuals need to be able to orientate themselves in a swimming pool and avoid obstructions like lane-lines, pool walls and other swimmers for a safe experience. Additionally, it is important to BVI swimmers to maintain their independence and maintain a low profile during this experience. The Buoy team will focus on the design, testing and implementation of assistive technology


focused on a pool environment with continuous input and feedback from the BVI community. A current passive device created in previous IPROs will be field-tested in a BVI pool for the semester in order to identify failure-modes of the device and collect real-world BVI user feedback to discover areas for improvement. Additionally, two groups have been organized to assess the use of invisible-fence and laser technology in the creation of new assistive technology. Surveys and interviews will be conducted with the BVI community on a continuous basis to ensure the Buoy team is meeting the

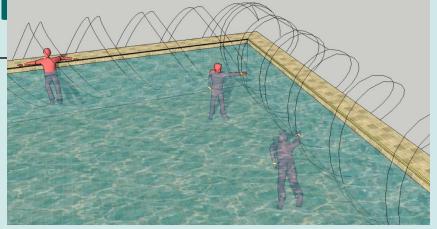
(http://iit.edu/~ipro310f09)

EMF Technology

Research

ODetermined frequency of stock transmitter **O**Studied **Electronics** concepts OMet with consultant

Signal of the Transmitter (Max Amplitude)


Tests

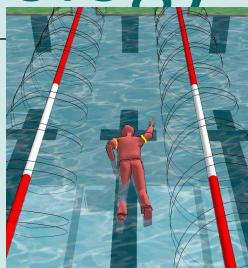
- Conducted quality test of EMF Prototype I
- Conducted optimum frequency test of EMF Prototype II

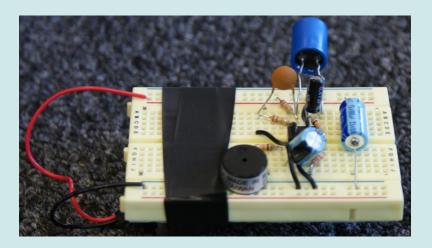
EMF Technology

Results/Analysis

- •Prototype I was able to detect EM fields, but not in a range that would be suitable for pool testing
- •The signal generated by the transmitter is encrypted. A transmitted will need to be designed and developed to enhance the receiver
- •The receiver's performance is partially due to the optimal frequency that it detects.
 - •Using the concept of a band pass filter, the optimal frequency can be calculated and implemented

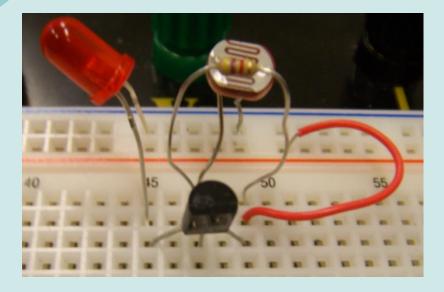
Challenges

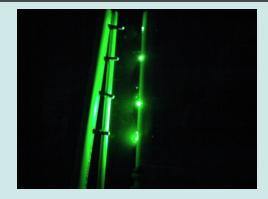

- •Integrating a vibration into the receiver.
- •Detecting distance
- •Designing a transmitter.
- •Implementing electronic circuit concepts within circuit design(s).
- •Time, budget, and lack of expertise.


EMF Technology

Possible Next Steps

- •Troubleshoot Prototype II
 - •Detect within a suitable range
 - Vibrate in the presence of an EM field
- •Design and develop a transmitter sending a frequency unique to the receiver
- •Design and develop both a transmitter and wristband that is discrete, functional, and safe within a pool environment





LASER Technology

Research

Circuit design modification
Power consumption
Laser beam propagation in water
Applications of lasers underwater

Tests

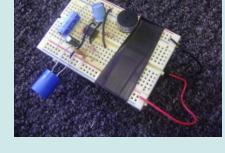
- •Underwater range testing of red and green lasers
- Varied circuit tests

LASER Technology

Results/Analysis

- Properly working circuit
- •Maximum 51ft underwater range of green laser
- •Splashing does not interfere with laser beam

Challenges


- •Installation of device in pool environment
- •Circuit design
- •Aligning laser beam with sensor

Possible Next Steps

- •Minimizing size for wristband installation
- •Further testing in pool environment
- •Waterproofing device for continued underwater use

Accomplishments

- Participated in disabilities exercise
- Created code of ethics
- Created team identity/ structure
- Visited Chicago Light house
 - Administered surveys/ analyzed data
 - Met with web consultant
- Developed EMF Prototype I
- Presented at RESNA conference

Accomplishments

- Developed EMF Prototype II
 Developed LASER Prototype
- Developed LASER Prototype
- O Put up website
- Visited The Chicago Lighthouse
 - Interacted with the BVI community
- Checked website's compatibility with screen readers

Next Steps

- Continue community outreach
- Continue consumer based design
- Facilitate continuity of the website
- Trouble shoot current prototypes
- Develop new prototypes based off of current ones
- Consider ways to integrate EMF and LASER technologies

Questions?