### IPRO 319

Development of Solutions to Improve Survival Rate of Cardiac Arrest Patients

#### The Problem



- Sudden Cardiac Arrest is a leading cause of death in the United States
- Brain injury is likely if cardiac arrest is untreated for more than 5 minutes
- Cardiac arrest results in ischemia reperfusion injury<sup>1</sup>
  - -Sudden high levels of oxygen cause brain damage

 Current procedures dictate that 100% oxygen be given to cardiac arrest victim

#### Mission Statement

 To minimize the damage caused by cardiac arrest through the development of devices specifically aimed at lowering mortality rate.





#### Goals

- Cool the brain & slow metabolism
- Reduce initial oxygen intake
- Design device for use within first
   10 minutes of the cardiac arrest
- Simple, cost-effective design that minimizes potential for human error
- Design device that can be integrated into existing AED devices



#### **Project Plan**



### Budget

| Item                           | Quantity | Price    |
|--------------------------------|----------|----------|
| Oxygen Tank                    | 2        | \$198.00 |
| Oxygen Tube                    | 7 feet   | \$24     |
| Macroline Nylon 11 Tubing      | 5 feet   | \$5.00   |
| High Concentration Oxygen Mask | 2        | \$35.70  |
| Solenoid Valves                | 2        | \$66.50  |
| Solenoid Controllers           | 2        | \$44.68  |
| Oxygen Sensor                  | 1        | \$70.00  |
| Thermometer                    | 2        | \$35.00  |
| Isopentane                     | 1        | \$50     |
| Total                          |          | \$443.88 |

#### Previous Semester's Work

Cooling Jacket
 Concept Prototyping
 Basic Modeling



#### **Research: Cooling**

- Need to lower the temperature of the brain to reduce swelling after resuscitation.
- Skull is excellent insulator.
- The human body tries to maintain constant temperature.



#### **Research: Breathing**

H<sub>2</sub>S gas used in mice to induce hibernation
 Had negative results when tested on piglets



#### Research: Oxygen Levels

| Percentage<br>Oxygen | Effect on People                                                                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.9%                | Percentage of oxygen found in normal air. No effect.                                                                                                                        |
| 19.5%                | Minimum permissible oxygen level. No effect.                                                                                                                                |
| 15-19%               | Decreased ability to work strenuously. May impair coordination and<br>may induce early symptoms with individuals that have coronary,<br>pulmonary, or circulatory problems. |
| 12-15%               | Respiration and pulse increase; impaired coordination, perception, and judgment occurs.                                                                                     |
| 10-12%               | Respiration further increases in rate and depth; poor judgment and bluish lips occur.                                                                                       |
| 8-10%                | Mental failure, fainting, unconsciousness, an ash-colored face,<br>blue lips, nausea, and vomiting                                                                          |
| 6-8%                 | recovery with treatment.                                                                                                                                                    |
| 4-6                  | Coma in 40 seconds, convulsions, respiration ceases, Death                                                                                                                  |

#### Testing

 Used layer of wax over water to simulate human body

Tested various methods of cooling

Ice Packs
Natural Body
Isopentane





#### Solution Design: Breathing Mask



# Solution Design: Cooling Jacket

 Design a device to protect the body from ischemia reperfusion injury by decreasing body temperature

 $\circ$   $\,$  Produce a prototype of the device





#### Teams

Cooling Matti Alemayehu Alex Bunce Jessica Shaw Myint Toe Rebecca Martin

Mask building Gustavo Untiveros Caidi Zhang Jerry Jose Paul Butkovich Matthew Cosenza

#### Results

#### **Temperature Drop Over Time**



#### **Obstacles: Breathing Mask**

- Research on Hydrogen Sulfide has not been tested on humans to see if it will induce hibernation
  - May be done in the future on larger animals
- Human testing is not possible by the team
- Difficulty getting equipment for prototype
- EMPs are reluctant to change the way heart attack victims are treated

#### **Obstacles: Cooling Jacket**

- Humans maintain homeostasis
- Human body is well insulated
- More time is needed to do testing
- Current screen is not efficient in keeping the cooling liquid in contact with the body.
- Emergency Medical Services
  - Keep device simple, compact, and durable
- Ethical Testing
- Expense of Fluorinert

#### Next Steps

- Continue development of working prototypes
- Extend research into various other methods used to help patients including shaking.
- Try to study effects of Hydrogen Sulfide on humans
- Look at other chemicals that can be used to induce hibernation in humans to reduce oxygen intake and increase chances of survival
- Testing with fluorinert

#### Acknowledgements

Professor Francisco Ruiz
Professor Ray DeBoth
Jennifer Keplinger

## Questions!