IPRO 321 Fall 2007

Improving the Reliability and Efficiency of a Paper Shredder

The Team

<u>Torque :</u>

• Yuxiong Huang, Grad.

Information Technology & Management

• Vesna Pesik, Sr.

Electrical Engineering

• Nil Valls, Sr.

Physics, Aerospace Engineering

Torque Apparatus:

• Plamen Marinov, Sr.

Mechanical Engineering

<u>Gear Train</u>:

- Justin Choriki, Jr. Mechanical Engineering
- Tyler Inouye, Sr. Electrical Engineering
- Garrett Nielson, Sr. Electrical Engineering
- Brandee Toyama, Jr. Mechanical Engineering

Sound :

• Stephen Flicek, Sr.

Mechanical Engineering

- Richard King, Sr. Computer Engineering
- Angad Nagwan, Sr.

Mechanical Engineering

• Leslie Obst, Sr. Mechanical Engineering

Kyle Swaidner, Sr.

Aerospace Engineering

The Problem

Paper shredders are:

• Noisy

Cost sensitive

Unreliable

Objectives

DETERMINE TORQUE

OPTIMIZE GEAR TRAI

REDUCE NOISE

Noise Reduction

Two Paper Shredders • Royal Paper Shredder (\$30) –Cross Cut –AC Motor

Ativa Paper Shredder (\$70

 Diamond Cut
 DC Motor

Noise levels of Shredders

Noise level vs. No. of

Torque

Torque Testing

The torque necessary to shred paper was determined by:

1. Electrical Method

2. Mechanical Method

Electrical Method

- Input power (V_{rms} · I_{rms}) was measured with a voltmeter and ammeter.
- Rotational speed (ω) was measured with a tachometer.

Mechanical Method

Key Features

- Gear reduced DC motor
 - Adjustable speed
- Strain gage rosettes

 Allow torque measurements by computer software
- Calibrated with known weights and a measured moment arm
 - Ensures high accuracy
- Allows the mounting of other shredding heads

Power Curve for Shredding

Application of Torque Data

Motor and gear sizing

Maximum load ratings

Creation of new models

 Comparison with competing manufacturers

Gear Train

Research

- Group research on basics of gear types and uses
- Leveraged previous IPRO work where possible
- Contacted and collaborated with gear companies for gear train analysis

Research

Spur Gear

Helical Gear

Double Helical Gear

Worm Gear

Shredder Gear Set

Work and Results

 Tested Gear Train to find maximum load before break

 Group compiled research into two excel files for calculations

Work and Results

gear 1		gear 2				
RPM	15000.00	RPM	1630.43			
Torque(Nm)	0.16	Torque (Nm)	1.47			
mesh 1						
Frequency (kHz)		75.00				
Normal		69.72				
Tangent		65.51				
Separation		23.84				
Stress at Root 1 (N/mm ²)		3.70				
Stress at Roo	ot 2 (N/mm²)	3.60				

Forces Table Snapshot

Work and Results

	Material	Specification	Ultimate Tensile Strength	Yield Tensile Strength	Tooth Hardness - Core
			Rm	Rp(0.2)	VPN
			MPa	MPa	HV
		BS EN 1561:1997			
1	Grey Cast Iron	EN-GJL-200	200	100	200
		BS EN 1561:1997			
2	Grey Cast Iron	EN-GJL-250	250	125	220
		BS EN 1561:1997			
3	Grey Cast Iron	EN-GJL-300	300	150	240
		BS EN 1563:1997			
4	Ductile Cast Iron	EN-GJS 600-2	600	370	190
		BS EN 1563:1997			
5	Ductile Cast Iron	EN-GJS 700-2	700	420	230
		BS EN 1563:1997			
6	Ductile Cast Iron	ENGJS 800-2	800	480	250
7	Carbon Cast Steel Normalized	BS 3100:1991 A3, A5 **	500	260	150

Gear Strength Table Snapshot

Recommendations/Res

- Gear train:
 - o sufficient strength,
 - \circ can be modified to reduce noise,
 - improve gear manufacturing process,
 install bearing on first gear.
- Maximum shredding capacity should not be increased: (2 Extra sheets 60% increase in Torque)
- Slower, higher torque motor to reduce noise, & provide more consistent operating speeds

Acknowledgements

- •Mr. Seth Lewis, President, The Manhattan Group
- Professor Sheldon Mostovoy
- •Mr. Russell Janota, Director, MMAE Laboratories
- •IIT Machine Shop
- Arrow Gear

Thank You

