New Technologies for Cardiac Arrest

IPRO 319 Spring 2010

Presented By: Kirsten Esbensen, Neelkumar Patel, Juan Martinez, & Sua Kim

The Problem

- About 1.5 million people suffer from cardiac arrest and heart attacks each year in the U.S
 - Over 500,000 die
- Many survivors suffer from brain damage within minutes of the attack
- However;
 - CPR along with the use of an AED within the first 3 minutes of attack increases chances of survival by 70% and reduces brain damage

Objective

- Developed three different technologies to help victims of cardiac arrest
 - Increase survival
 - Decrease brain damage

Agenda

- Team Structure
- Team Obstacles
- Shaker
- Cooler
- Patch
- Business Group
- What's Next
- Conclusion
- Acknowledgments
- Questions

Team Structure

Four Sub-Teams

Met Once a week as entire group Reported findings, progress, and obstacles from the week

Work in Sub-teams remainder of the week

Team Obstacles

High expectations, not enough time
 Had to adjust project plan

New ideas, solutions, and findings

 Had to adjust project plan and designs accordingly

Shaker Sub-Group

Why Does Shaking Work?

- Whole Body Periodic Acceleration (WBPA) involves oscillating the body along the spinal axis
- Creates better blood flow than traditional CPR (Chest compressions) and reduces brain damage
- Eliminates side effects caused by traditional CPR
- Easier to use with AED

Previous IPROs

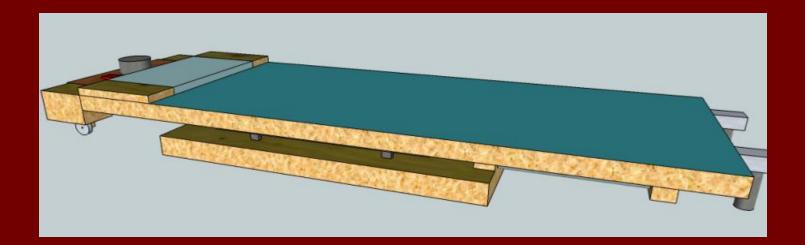
Achievements:

Researched optimal acceleration for oscillation

Determined optimal wheel and spring size to best achieve optimal acceleration

Created a prototype

Previous IPROs


Areas for Improvement:

Surface friction was unpredictable

Human force provided to move shaker made difficult to insure reaching optimal acceleration

What We Accomplished

- Attached a track system better controlling friction
- Attached a motor

What We Accomplished (Cont.)

Cooler Sub-Group

Why Does Cooling Work?

- Therapeutic hypothermia lowers body temperature to 32-34°C which reduces risk of ischemic injury to tissue
- Ischemic injury occurs when there is a restriction in blood flow to respective tissue
- The faster cooling is applied the lower the risk for brain damage

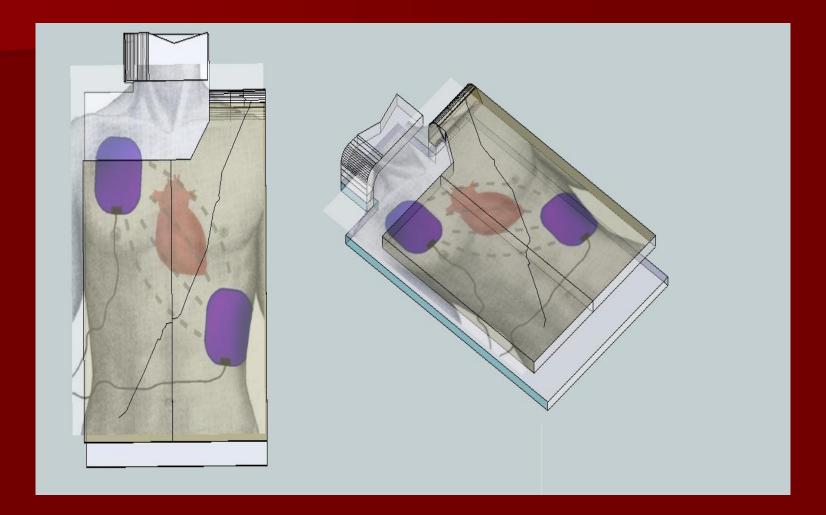
Previous IPROs

Achievements:

Determined a solution to be used as a cooling agent, and developed prototype

Issues:

Design did not allow for quickest coolingDesigned not easily portable


What We Accomplished

Determined best materials to use

Designed vest in a manner that would cover as much surface area as possible and cool body quickly, but not interfere with AED

Made vest easily portable to continue cooling once victim in transit

What We Accomplished (Cont.)

Patch Sub-Group

The Problem

Massive brain damage occurs once a victim is resuscitated due to rush of oxygen

Cooling helps to reduce brain damage, but wanted to explore other solutions that may further decrease brain damage

What We Accomplished

Found that by inducing a hibernation state and slowly reviving one from such state would slowly re-introduce oxygen to system

- Determined the ideal solution (H₂S) to induce hibernation state
- Investigated ways to introduce H₂S
 - Trans-dermal Patches

Business Sub-Group

Problem

In-depth research of underlying technology incomplete and not compile in detail

Solid and research supported technologies, but what next?

Solution & Findings

 Compiled definitive supporting research for various proposals and deliverables
 – BME Idea & ASME Innovations Showcase

Investigated testing requirements

 Animal testing, Clinical human testing, Regulatory pathway: Pre-Market Approval

Solutions & Findings (Cont.)

- Examined existing patents in great detail
 Current patent for similar technology, expires in 7 years
- Investigated market potential and possible distribution channels
 - Used AED market as model
 - Cardiac Science over 9,800 units sold last year

What Next?

- Fine- tune shaking and cooling technologies
 - Shaking: Improve range of acceleration
 - Cooling: Determine best way to infuse vest with cooling agent

Testing and government approval for Shaker and Cooler as combined product

What Next? (Cont.)

Revisit patents, investigate means of mass production, distribution, and marketing of product

More research needed in the patch area to confirm technology

Conclusion

Two effective technologies, combined into one life saving product

Technologies are nearly perfected, and there is a market need for them

Time to move toward bringing the product to market

Acknowledgments

We would like to thank Francisco Ruiz, Ray DeBoth, Robert Anderson, Sheldon Mostovoy David Beiser (U of C Medical), Russ Jadota, and the IPRO office

http://www.heartratemonitors.us/
 - Picture, slide one
 http://www.americanheart.org
 http://www.womensheart.org

