

IPRO 324: Power Measurement in Performance Bicycles

"No Strain, No Gain"

Final Presentation Friday, April 23, 2010

Team Organization

Purpose

- Uses applied torque to measure power input to bicycle
 - Instant or summary feedback
 - Variety of training applications
- More direct measurement than heart monitor

Definition of Power

- Power is energy per unit time
- Computed using torque and RPM

Power = Force • Speed

Force (lb)	Angle (°)	Torque (ft-lb)	RPM	Power (W)
65	35	21.1	60	179.77
90	125	41.72	60	355.48
120	70	63.82	45	407.8

Background

- Existing products are expensive
 - Cost of current popular products
 - Power Tap (\$999.00)
 - SRM (\$2,607.80)
 - Quarq CinQo (\$1,495.00)
- Universality

Visual Team

- Good application of skill sets
- Assist in essential areas of project management
 - Finding and ordering parts
 - Documentation and deliverables
- Design of product housing

IPRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

Mechanics

Strain Gauges

- Resistance hanges with applied load
- 4 gauges per bridge
- 4 bridges per crank set
- Bridge maintains resistance with change in temperature

Static Testing

- Aluminum crank set
- Carbon fiber crank set
- Electronics compatible data

Static Testing Data

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Mathematical Uncertainty

Marketable Product

• Aesthetically Pleasing • Functional

IPRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

Electronics Background

- Started with a rough prototype
- Main Components
 - PIC Microcontroller
 - ANT+ Wireless
 - Strain Gauges
 - Reed Switches

New Circuit Board

- Motivated by deficiencies and consumer market concerns
- Fine-tuned component selection
- Lower power consumption
- Universal Form Factor

Microcontroller

- New microcontroller
 - PIC18LF2331
- Code Rewrite
 - Accuracy
 - Efficiency
 - Structure/Comments
 - Maintainability
 - Extendibility
 - Customization

Other Circuit Improvements

- Correction of reed switch operation
- Additional strain gauges
 / supporting circuitry
- Voltage regulation for digital conversion
- Removed unnecessary chips
- Noise reduction

Test Module

- Motivation: ANT+ not fully functional
- Measurement circuitry mounted on crank set
- Slip ring used to connect circuits
- Remaining circuitry on breadboard
- Provides real-time data measurement

Obstacles

- Resources for electrical team
- Time for PCB layout design and manufacture
- Having test circuit for mechanical team

Obstacles Overcome

- Designed setup with slip ring and standard PCB
- Read data straight from microcontroller
- Trained a layout expert

Major Accomplishments

- Took prototype circuit from Rev. 1 to Rev. 4
- Designed universal housing
- Two new power calculation methods
- Collected data for carbon-fiber crankset
- Read dynamic output data from bicycle

Major Accomplishments

- Designed RPM sensor using reed switches
- Redesigned and optimized microcontroller code
- CAD model of finished product
- Physical testing module
- Documentation

Future Work

- Calibration
- Road test
- Comparison with competition
- Power consumption minimization
- Find sources of error
- Cost cutting

Conclusion

- Documentation is important
- Designing a product is a team effort
- Good communication prevents problems

IPRO It takes a team! INTERPROFESSIONAL PROJECTS PROGRAM

