Improving Voice Recognition Prompts for Users in Various Application Environments

IPRO 316 Project Plan Advisor: Matt Bauer

Fall 2010

1 Abstract

Users of speech recognition technology often hyperarticulate (i.e., exaggerate) their speech in response to recognition failures and subsequent requests to repeat (e.g., "I'm sorry, I didn't understand, please repeat the input."). Hyperarticulation usually leads to further recognition failure. The goal of the current project is to develop a protocol for testing different talker characteristics of voice prompts in speech recognizers with an aim towards minimizing hyperarticulated speech from users. This IPRO is equally suited to students interested in the more technical aspects of acoustic phonetics and voice recognition as well as the cognitive aspects of predicting user behavior in technology-mediated environments.

2 Background

This IPRO continues the basic work of IPRO 343 F08 and S09 and IPRO 316 S10 in examining acoustic and cognitive factors that contribute to understanding speech for public and commercial purposes.

Hyperarticulated speech is exaggerated or more extremely produced speech (Lindblom 1990). Speakers will hyperarticulate their speech to overcome noisy work environments (Tufts and Frank 2003), to address children (Kuhl 1997), to address hard-of-hearing listeners (Picheny, Durlach, and Braida 1985), to address pets (Burnham, Kitamura, and Vollmer-Conna 2002), to accent words (Cho 2005), to convey fussiness (Eckert 2005), to indicate salient points within a sentence (Cho 2005), and to express frustration, sadness, excitement and other emotions (Lee et al 2005, Litman and Forbes-Riley 2006, Ververidis and Kotropoulos 2006).

Hyperarticulation involves enhancement of the acoustic signal and modification of the normal movement of the vocal organs. In particular, hyperarticulated speech is louder and higher pitched. Speech segments are longer, and the acoustic vowel space is larger. Jaw displacement from rest position is more extreme, and tongue body movement is more exaggerated, such that articulations requiring the tongue body to be high and front in the vocal tract are sometimes higher and more forward in the mouth (Lindblom and Moon 1994, De Jong 1995, Johnson et al. 1993, Smiljanic and Bradlow 2005).

Several studies have shown that when speech recognizers fail to identify a string of speech and then ask users to repeat the input, users will hyperarticulate their responses (Oviatt, MacEachern and Levow 1998, Swerts, Litman, and Hirschberg 2000, Goldberg, Ostendorf, and Kirchhoff 2003, Hirchberg, Litman, and Swerts 2001). Interestingly, as a result of such hyperarticulation, once users are issued such failure-to-understand prompts, recognition rates fall significantly as hyperarticulation increasingly distorts the speech string (Swerts, Litman, and Hirschberg 2000). Thus, an ability to correctly predict how exactly speakers will hyperarticulate speech in failure-to-understand situations is a present challenge for speech researchers (Oviatt, MacEachern and Levow 1998).

One factor related to hyperarticulation in failure-to-understand responses is user emotion. A significant body of literature has shown how emotions of speakers affect their speech (Williams and Stevens 1972, Goldberg, Ostendorf, and Kirchoff 2003, Linnankoski et al 2005, Nordstarnd et al 2004, Lee et al 2005, Litman and Forbes-Riley 2006, and see Ververidis & Kotropoulos 2006 for a bibliography of several dozen other papers). In human-computer interactions, hyperarticulation from frustration is frequently exhibited but can be minimized if the wording of the error message is apologetic, rather than direct (e.g. "I'm sorry, I didn't understand. Please say the sentence again," vs. "Say the sentence again.") (Goldberg, Ostendorf, and Kirchoff 2003). Another factor related to hyperarticulation in failure-to-understand responses is user desire to be intelligible. Lindblom and Moon (1994) observe that speakers instructed to "speak clearly" will usually hyperarticulate their speech, even if doing so undermines intelligibility of speech.

At issue is whether other talker characteristics of the voice prompt, such as its speaking rate, pitch, intonation, and its own degree of hyperarticulation, influence users' speech in predictable ways and can further minimize recognition failure.

3 Objectives

The goal of the IPRO is to develop a protocol for testing different talker characteristics of voice prompts in speech recognizers with an aim towards minimizing hyperarticulated speech from users and improving recognition success rates.

- I The IPRO team will learn about the acoustic properties of normal and hyperarticulated speech in order to better understand the problem and potential solutions.
- II IPRO subteams will identify relevant factors in the quality of voice prompts to be tested during the experiments.
- III The IPRO team will devise and condut experiments to test the effect of varying the properties of the voice prompt's speech.
- IV The IPRO team will summarize recommendations for improving voice prompts in voice recognition systems so as to reduce the amount of hyperarticulated speech from users.

4 Work Breakdown Structure

Task	Description	Deadline
Learn Acoustic Founda-	The team will learn the fundamentals of acoustics and how	9/9/10
tions of Speech	this affects the way speech is interpreted by humans and	
	computers.	
Project Plan	Revise and Submit the project plan.	9/12/10
Budjet Proposal	Revise and Submit the proposed budget.	9/12/10
Ethics Training	Complete web training on research ethics.	9/28/10
Evaluate Existing Voice	A team will collect recordings of existing voice prompts for	9/16/10
Prompts	further analysis.	
Devise Solutions	The team will devise solutions and experiments to test those	9/30/10
	solutions.	
Midterm Presentation	A team will compile the data acquired and give a presen-	10/14/10
	tation on the current state of the project.	

4.1 Phase One

4.2 Phase Two

Task	Description	Deadline
Recruitment	A team will recuit IIT students to be our test subjects.	10/19/10
Design Stimuli	A team will devise the stimuli necessary for the experi-	10/21/10
	ments.	
Design Measurement	A team will design tools needed to gather data during the	10/21/10
Tools	experiments.	
Administer the Experi-	The team will administer the experiments on test subjects	11/10/10
ments and compile the results.		
Plan of Analysis	A team will construct a plan to analyze data obtained from	11/16/10
	the experiments.	

4.3 Phase Three

Task	Description	Deadline
Analyze Results	The team will analyze the results of the experiments.	11/25/10
Final Report	A team will write up the final report, including the analysis	12/2/10
	of the results and further recommendations.	
Final Presentation	A team will present the findings from the IPRO.	12/3/10

5 Expected Results

We expect that by the end of the semester the IPRO team will have established which talker characteristics of voice prompts elicit the most successfully recognized speech, and will be able to make recommendations leading to more successful voice recognition systems.

6 Project Budget

Experimental Expenses	Days	Price Per Day	Total
Participant Incentive/Support - Pizza	4	\$125.00	\$500.00
IPRO Day Expenses	-	Price	Total
Exhibit Materials	-	\$90.00	\$90.00
Other Expenses	Amount	Price Per Unit	Total
Audio Equipment	-	\$20.00	\$20.00
TOTAL EXPENSES			\$610.00

7 Team Structure and Assignments

To better facilitate the completion of the project's objectives, the team has been divided into groups and roles have been assigned as follows:

IPRO 316 Team Leader: Naomi Peterson

Final Report Leader:	Nithin Winston
Ethics Training Leader:	Shashank Gopal
Experiment Organizer:	Andrew Bossemeyer
Minute Taker:	Alexander Webster
Agenda/Time Keeper:	Robert Millonzi

7.1 Phase One

Group	Members	Description
Learn Acoustic Founda-	All	We will learn some IPA and the acoustic prop-
tion of Speech		erties of speech in order to determine how best
		to improve voice prompts in recognition sys-
		tems.
Project Plan	Ruth Morrison	This group will write the project plan (this
		document).
Ethics Training	All	We will become certified to administer the
		necessary experiments.
Evaluate Existing Voice	Alexander Webster, Vin-	This group will collect recordings of existing
Prompts	cent Echavarria	voice prompts and evaluate their merits.
Devise Solutions	All	We will come up with possible solutions to the
		problems with existing voice prompts.
Midterm Presentation	Nithin Winston, Andrew	This group will create the slides for and give
	Bossemeyer, Gabriel	the Midterm Presentation.
	Klansky	

7.2 Phase Two

Group	Members	Description
Recruitment	Robert Millonzi, Andrew	This group will recruit IIT students to partic-
	Bossemeyer, Shashank	ipate in the experiments.
	Gopal	
Design Stimuli	Ruth Morrison, Nithin	This group will decide on voice quality vari-
	Winston, Gabriel Klansky	ables to test during the experiments.
Design Measurement	Alexander Webster, An-	This group will design measurement tools used
Tools	drew Bossemeyer	in the experiments.
Administer the Experi-	All	We will administer the experiments and record
ments		the data collected.
Plan of Analysis	Alexander Webster, An-	This group will plan how to analyze the data
	drew Bossemeyer	gathered during the experiments.

7.3 Phase Three

Group	Members	Description
Analyze Results	All	We will analyze the data collected in the ex-
		periments.
Final Report	Nithin Winston	This group will write up the final report con-
		taining the findings from the experiments and
		our recommendations.
Final Presentation	Andrew Bossemeyer,	This group will give the final presentation.
	Robert Millonzi, Naomi	
	Peterson	
IPRO Booth	All	We will present the findings to all interested
		at IPRO day.

8 Team Members' Background and Expectations

Name	Major	Year	Teams	Skills	Interests
Alexander	Electrical	3rd	Minute Taker, Learn Acoustic	Java, C,	Music,
Webster	Engineering/		Foundations of Speech, Ethics	Open Office,	Games,
	Computer		Training, Evaluate Existing	Breadboard-	Computers,
	Engineering		Voice Prompts, Devise Solutions,	ing, MS	Gadgeteer-
			Design Measurement Tools, Ad-	Paint, Cir-	ing
			minister the Experiments, Plan	cuit Design,	
			of Analysis, Analyze Results,	Fourier	
			IPRO Booth	Analysis	
Nithin Win-	Biomedical	4th	Learn Acoustic Foundations of	MS Paint,	Books, Tele-
ston	Engineering		Speech, Ethics Training, Devise	MATLAB,	vision, Music
			Solutions, Design Stimuli, Ad-	MS Office,	
			minister the Experiments, Ana-	AutoCAD,	
			lyze Results, Final Report, IPRO	Organiza-	
			Booth	tional Skills	
Vincent	Computer	3rd	Learn Acoustic Foundations of	Java, C++,	Reading,
Echavarria	Science		Speech, Ethics Training, Evalu-	C, MS	Games,
			ate Existing Voice Prompts, De-	Office,	Computers,
			vise Solutions, Administer the	OpenOffice,	Movies
			Experiments, Analyze Results,	LaTeX	
			IPRO Booth		
Robert Mil-	Architecture	5th	Agenda/Time Keeper, Learn	Photoshop,	Architecture,
lonzi			Acoustic Foundations of Speech,	Illustrator,	Music, and
			Ethics Training, Devise Solu-	In Design,	various other
			tions, Recruitment Administer	and other	arts
			the Experiments, Analyze Re-	design soft-	
			sults, Final Presentation, IPRO	ware	
			Booth		

8.1 Team Members' Background

Name	Major	Year	Teams	Skills	Interests
Andrew Bossemeyer	Architecture	5th	Experiment Organizer, Learn Acoustic Foundations of Speech, Ethics Training, Devise Solu- tions, Midterm Presentation, Re- cruitment, Design Measurement Tools, Administer the Experi- ment, Plan of Analysis, Ana- lyze Results, Final Presentation, IPRO Booth	Graphic De- sign, Leader- ship	Baseball, Volleyball, Photog- raphy, Sketching
Ruth Morri- son	Computer Information Systems	5th	Learn Acoustic Foundations of Speech, Project Plan, Devise So- lutions, Design Stimuli, Admin- ister the Experiment, Analyze Results, IPRO Booth	C/C++, Java, Word Processors and LaTeX, Familiar- ity with IPA and Linguistics	Language, Comput- ers, Pro- gramming, Reading
Shashank Gopal	Computer Science and Computer Engineering	4th	Ethics Training Leader, Learn Acoustic Foundations of Speech, Ethics Training, Devise Solu- tions, Recruitment, Administer the Experiments, Analyze Re- sults, IPRO Booth	Communication Effective Teamwork, Organization	nMusic, Read- ing, Coding
Gabriel Klansky	Humanities	4th	Learn Acoustic Foundations of Speech, Ethics Training, De- vise Solutions, Midterm Presen- tation, Design Stimuli, Admin- ister the Experiments, Analyze Results, IPRO Booth	Writing, Presenting, Photog- raphy, Linguistics background	Semiotics, Photogra- phy, Com- munication, Philosophy
Naomi Pe- terson	Computer Science	4th	Project Leader, Learn Acoustic Foundations of Speech, Ethics Training, Devise Solutions, Ad- minister the Experiments, Ana- lyze Results, Final Presentation, IPRO Booth	Java, MS Office, Leadership, Communica- tion	Speech ac- cents, Music, Computers, Reading

8.2 Team Members' Expe	$\operatorname{ctations}$
------------------------	---------------------------

Name	Short Term Goals	Long Term Goals	
Alexander	To create working systems that suit the	To gain valuable experience working	
Webster	needs of the experiments and, hence,	with a development team towards fur-	
	further research into voice-recognition	thering a research end.	
	technology.		
Nithin Win-	I would like to partake in research that	I would like to have more experience	
ston	will benefit and promote the field of	working with a team on a research	
	voice-recognition technology.	project.	
Vincent	I want to help improve voice recognition	I would like to learn more details about	
Echavarria	prompts.	voice recognition technology because it	
		looks to be a major part of everyday life	
		in the future.	
Robert Mil-	I want to see this group provide mean-	To work in a team scenario with vari-	
lonzi	ingful research into the development of	ous disciplinary backgrounds to achieve	
	voice-recognition software.	a common goal.	
Andrew	Develop a command prompt that de-		
Bossemeyer	creases hyper-articulated responses		
Ruth Morri-	I'd like to learn more about the au-	I hope to gain experience with working	
son	ditory properties of speech, and how	as part of a team and conducting ex-	
	other people react to them.	periments in order to further research.	
Shashank	I would like to learn to use Praat. I	I would like to help improve voice recog-	
Gopal	would like to understand linguistics. I	nition prompts.	
	would like to use ultrasound to under-		
	stand tongue movement.		
Gabriel	I hope to run an experiment and ana-	My long term goals are to learn how to	
Klansky	lyze the results. I also hope to learn	be a team player and work in a group	
	how to analyze speech.	effectively. In tandem with that, I hope	
		to learn to subdue my aggressiveness for	
		others.	
Naomi Pe-	I would like to understand people bet-	I hope to gain valuable experience in	
terson	ter, specifically what causes their spo-	learning new things quickly in a team	
	ken response to audio directions to	environment so I can jump into help-	
	change and what changes are caused.	ing with problem-solving almost imme-	
		diately.	