IPRO 344 Technical and Market Integration of Wind Energy

December 1st, 2006

Outline

- Motivations
- Location Selection
- Turbine Design and Simulation
- Pumped Storage Design
- Power System Impact
- Profitability Evaluation
- Environmental Assessment

Why wind energy in Illinois?

- Conventional power plants emit:
 - -70% of the total SO₂
 - 33% of the total NOx
 - -34% of the total CO₂
- Using fossil fuels to produce energy is not sustainable
- By 2012, 8% of all electrical energy in Illinois must come from renewables
- Wind is the most abundant renewable energy resource in Illinois

Goals for IPRO 344

- Complete mechanical and electrical design of a single wind turbine for specific sites in Illinois
- Study of the market impacts of wind farms
- Evaluation of the profitability of wind farms with multiple wind turbines
- Assessment of the environmental impacts in the ComEd area

Semester Plan

Stage 1

- Turbine size and type selection
- Location Analysis
- Energy Storage

Stage 2

- Mechanical Design
- Electrical Design
- Economic Analysis

Stage 3

- Electrical Simulations
- Mechanical Simulations
- Market Simulations

Stage 4

 Prepare IPRO deliverables

Wind Distribution Curves collected from Weather Stations

Turbine Components

Wind-to-Power Conversion Curve

Capacity Factor and Rotor Size

The capacity factor is checked with equation below:

$$CF = \frac{E_T}{T \times P_R} > 0.25$$

Then the rotor size is obtained:

$$R = \sqrt{\frac{2 \times E_T}{\eta_s \times \rho_a \times \pi \times (1.3V_M)^3 \times T}}$$

For all locations, the optimal size is approximately 45 meters

DesignFOIL: Virtual Wind Tunnel

Virtual Wind Tunnel			×
Angle Of Attack	Streamline Plot Not Used	1 0]
Lift Drag Moment -0.011 0.0075 -0.0945			
Streamline Options			
Animate streamlines?			
Streamline colors: Black/White/Yellow Colors Other Colors			
		~ _ <i>~ ~ ~ ~ ~ ~ ~</i> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Plot Options Plot Type C Cp?	~		
Draw Cp C VV(inf)? Close TE FunFlowViz			

IPRO 344 - Technical and Market Integration of Wind Energy

Blade Design Results

- A good design must have a lift-to-drag coefficient ratio of 110-130 (S. Mathew, "Wind Energy")
- The results show that for this design the average lift-to-drag coefficient ratio is 117.1

Blade material:

GRP (Glass fiber Reinforced Polyester)

High weight-to-strength ratio

Wind Tunnel Simulation

Station Number	Station Position (m)	ø (deg)	Chord Width (m)	Thickness (m)	NACA Number	C _L / C _D
1	2.25	0.0	2.88	2.45	Circle	0.0
2	6.75	21.4	3.90	2.06	64-950	94.0
3	11.25	12.8	3.88	1.89	64-643	106.9
4	15.75	8.4	3.59	1.27	64-534	115.5
5	20.25	5.8	3.02	0.84	64-527	118.9
6	24.75	4.0	2.49	0.51	64-524	126.7
7	29.25	2.8	1.97	0.43	64-521	125.6
8	33.75	1.9	1.49	0.30	64-519	127.2
9	38.25	1.3	1.09	0.23	64-518	123.6
10	42.75	0.7	0.83	0.14	64-517	115.6

Conceptual CAD Design of the Blade

ILLINOIS INSTITUTE

Energy Prices

- Energy prices vary significantly during the day
- It is desirable to store off-peak wind generation for use only when the selling price is high
- Electricity can not be easily stored, however, it is possible to store energy by pumping water into a high elevation reservoir

Underground Pumped Storage Design

- In the state of Illinois, there are no geographically favorable sites for constructing a pumped-storage power plant.
- For Chicago, there is another possibility of using the water from Lake Michigan as upper reservoir, with an underground lower reservoir.
- For other locations a lake or a river could be used as the upper reservoir.
- Because the lower reservoir is underground, the visual and environmental impacts are minimal.

Effects of Wind on the ComEd Market Price of Electricity

Environmental Assessment

- With increasing amounts of wind power in the system, the reliance on traditional thermal generators is reduced.
- Likewise, the usage of fossil fuels and the resulting emission are also reduced
- Emissions by fuel type (lbs per kW):

	Coal	Oil	Natural Gas
CO ₂	2.13	1.56	1.03
SO ₂	0.0134	0.0112	0.000007
NOx	0.0076	0.0021	0.0018

IPRO 344 - Technical and Market Integration of Wind Energy

Environmental Impact

ILLINOIS INSTITUTE

Conclusions

- Environmental Benefits: For adding wind in Chicago, 100 MW Wind Farm : 3.0 * 10⁴ MBTU fossil fuel usage reduction 3.8 * 10⁶ lbs CO₂ emission reduction 0.7 * 10⁴ lbs SO₂ emission reduction 6.0 * 10³ lbs NO_x emission reduction
- Wind Energy should be viewed for its environmental benefits and its impact on reduction of Electricity prices
- The characteristics of Wind Energy should not be compared to the conventional form of Energy Production

Achievements of the Team

- One appropriate Wind Turbine design for all four locations.
- Chicago (offshore) location the most profitable, followed by Bloomington.
- Showed that wind energy is environmentally beneficial. Inclusion of wind energy in the ComEd system decreases the electricity market price, the fossil fuel usage and reduces the CO₂, SO₂ and NOx emissions.

Future Work

- Communicating this project to the general public and seeking political support
- Learning the permitting process and applying for grants
- Contacting manufacturers and contractors to obtain more accurate price quotation
- Obtaining more detailed site dimensions and fine-tuning the technical designs
- Continuing this project with an EnPRO for actual implementation

Acknowledgements

Sponsor

Michael Polsky CEO, Invenergy LLC Chicago, IL

Faculty Advisor
 Prof. Shahidehpour
 ECE Dept., IIT
 Chicago, IL

Contact Information

- Dr. Mohammad Shahidehpour Carl Bodine Professor and Chair
 ECE Department
 Illinois Institute of Technology
 3301 South Dearborn Street, Suite 103, Siegel Hall, Chicago, IL, 60616
 Telephone: 312.567.5737
 E-Mail: ms@iit.edu
- IPRO 344 Website www.iit.edu/~ipro344f06/

CAD Drawings of Wind Turbine

ILLINOIS INSTITUTE

Wind Turbine Design

Operating Data:

Rated capacity: 2,500 kW Cut-in wind speed: 3.5 m/s Rated wind speed: 12.5 m/s Cut-out wind speed: 25 m/s

Rotor:

Number of blades: 3 Rotor diameter: 90 m Swept area: 6,082 m² Rotor speed range: 5.5-16.5 rpm

Wind Turbine Design

Tower:

Hub height: 80 m Construction method: Tubular steel

Power Control:

Active blade pitch control

Generator:

Variable speed with synchronous generator

Braking System:

Pitch control for each blade (aerodynamic brake) Mechanical brake for fully stopping the rotor

Pumped Storage Design

Pumping Mode Rated Power: 2.5 MW Rated Water Discharge: 0.25 Hm³/h

Generating Mode

Overall Efficiency: 67% Rated Power: 8 MW Maximum Water Discharge: 1 Hm³/h

Capacity:

Design Pumping Operating Time: 10 h/day Water Capacity: 0.83 Hm³ Maximum Generating Capacity: 5.5 MWh

Wind Power Potential in Illinois

ILLINOIS INSTITUTE

Wind-to-power conversion curve

• Betz limit: The maximum power that can be produced by a wind turbine is limited by

$$P = \frac{1}{2} \cdot \rho_a \cdot A_T \cdot V^3 \cdot \frac{16}{27}$$

 Due to technical and economical reasons, the wind turbine is designed to produce constant power beyond a certain rated wind speed

Wind-to-power conversion curve

From the literature, we know that the curve in region 1 can be approximated by:

$$P_{v} = P_{R} \left(\frac{V^{n} - V^{n}_{I}}{V^{n}_{R} - V^{n}_{I}} \right)$$

where, *n* = velocity-power proportionality

- V = wind velocity
- PR= Rated power of the wind turbine
- I,R = turbine cut-in and rated velocity

Annual energy production

The following equations are used to calculate the energy production within a period:

$$E_{IR} = \frac{P_R T}{V_R^n - V_I^n} \int_{V_I}^{V_R} \left(V^n - V_I^n \right) \frac{k}{c} \left(\frac{V}{c} \right)^{k-1} e^{-\left(\frac{V}{c}\right)_k} dV$$
$$E_{RO} = P_R T \int_{V_R}^{V_O} \frac{k}{c} \left(\frac{V}{c} \right)^{k-1} e^{-\left(\frac{V}{c}\right)_k} dV$$

$$E_T = E_{IR} + E_{RO}$$

Capacity factor and rotor size

The capacity factor is checked with equation below:

$$CF = \frac{E_T}{T \times P_R} > 0.25$$

Then the rotor size is obtained:

$$R = \sqrt{\frac{2 \times E_T}{\eta_s \times \rho_a \times \pi \times (1.3V_M)^3 \times T}}$$

Blade size results						
Location	k	С	E _a (MWh)	CF	<i>R</i> (m)	
Chicago	3.14	15.35	15,795.7	0.72	44.97	
Bloomington	2.99	10.51	8,864.41	0.40	43.91	
Rochelle	2.91	9.29	6,580.34	0.30	45.58	
Pittsfield	3.37	8.89	5,634.06	0.26	44.40	

Blade design results

From Burton, "Wind Energy Handbook" we choose the following blade construction type:

The chosen material for this blade design is glass/polyester due to its cost-effectiveness, popularity, and flexibility.

Wind Turbine Design

Operating Data:

Rated capacity: 2,500 kW Cut-in wind speed: 3.5 m/s Rated wind speed: 12.5 m/s Cut-out wind speed: 25 m/s

Rotor:

Number of blades: 3 Rotor diameter: 90 m Swept area: 6,082 m² Rotor speed range: 5.5-16.5 rpm

Wind Turbine Design

Tower:

Hub height: 80 m Construction method: Tubular steel

Power Control:

Active blade pitch control

Generator:

Variable speed with synchronous generator

Braking System:

Pitch control for each blade (aerodynamic brake) Mechanical brake for fully stopping the rotor

Pumped Storage Design

- The capacity of each wind turbine is rated at 2.5 MW. For example, a wind power plant capacity of 100 MW equals to 40 wind turbines.
- This pumped storage design is representative to 1 wind turbine. When the wind power plant capacity is increased, the pumped storage parameters are also properly increased.

Pumped Storage Design

Pumping Mode

Rated Power: 2.5 MW Rated Water Discharge: 0.25 Hm³/h

Generating Mode

Overall Efficiency: 67% Rated Power: 8 MW Maximum Water Discharge: 1 Hm³/h

Capacity:

Design Pumping Operating Time: 10 h/day Water Capacity: 0.83 Hm³ Maximum Generating Capacity: 5.5 MWh

MarSi: Fossil Units Commitment

MarSi: Wind Power Committed Capacity

