

Fuel

IPRO 313 FALL 2010

Problem

- Internal combustion engines
 - Emission pollution
 - Dependence on oil

Alternatives

Biofuels

- Emissions
- Land needed to produce

Hydrogen Fuel Cell

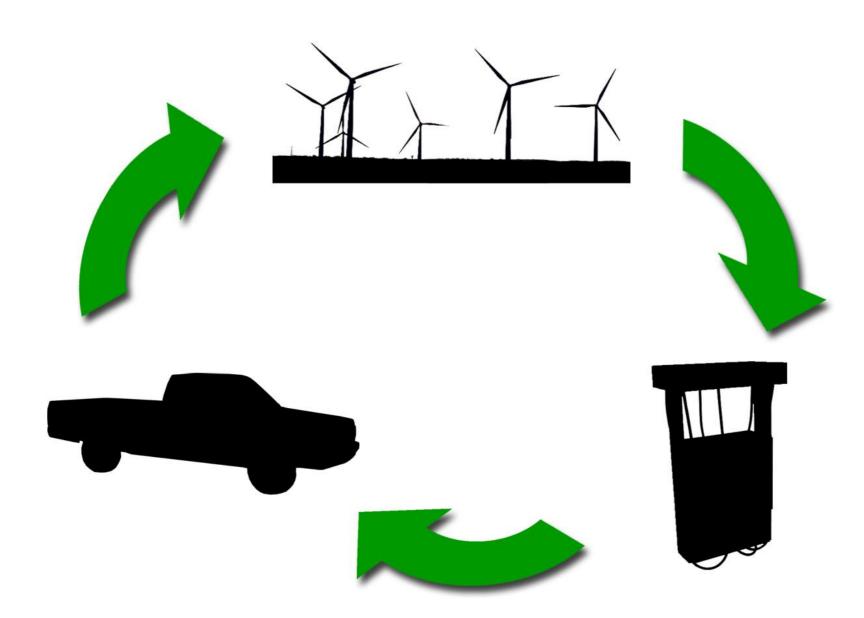
- Expensive
- Dangerous
- Made from natural gas

Plug-in Hybrid

- Emissions
- Oil dependence

Electric

- Expensive
- Limited range


Answer

- Zinc Fuel
 - Zero emissions
 - Safe
 - Renewable
 - Easy transition for users
 - Abundantly available
 - Cheap

Renewable Energy

Who will benefit?

- Zinc manufacturing and processing companies
 - Wider use of zinc will increase profits

- Sustainability organizations
 - Help advance their cause

- And most of all: consumers!
 - Cheaper fuel
 - Little change to current driving and refueling habits

Mission

Develop a working car that runs on zinc fuel

Help to advance sustainable technology

 Work cooperatively with people of different majors and skill sets

History of Zinc Fuel

 Original technology was invented and patented by John Cooper (Lawrence Livermore National Laboratories) in 1996

- Built a prototype
 - Wasn't meant to be refuelable
 - Was never mass produced

Zinc Air Inc recently acquired the patent

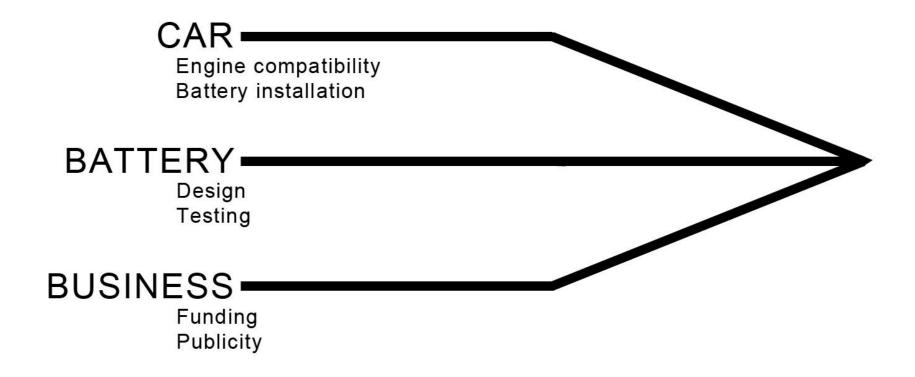
History of the IPRO

- Decided what technology to use
- Received grant from Exelon
- 2 trucks donated to work with, from Argonne
- Listed parts needed for truck compatibility
- Built and tested first battery prototype

Term Objectives

- Analyze test results from first prototype
- Design, build, and test second prototype
- Disassemble truck
- Install components needed for compatibility
- Determine what other parts are needed
- Continue to search for funding
- Improve outside interest in the project

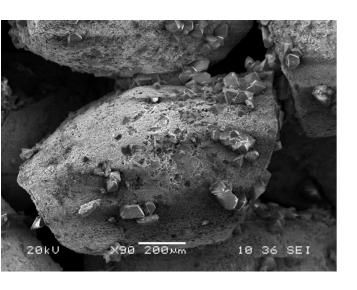
Team Organization

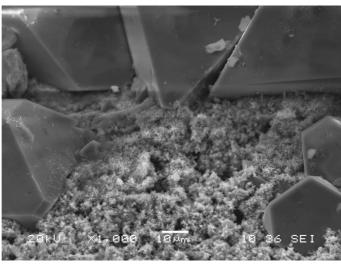

• 3 teams of 4-5 people

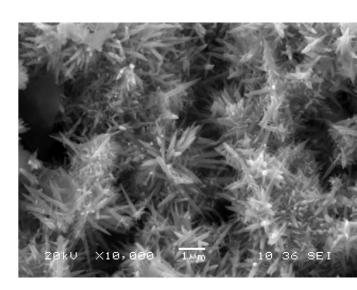
Developed semester timeline

- Weekly meetings
 - Progress report
 - Decision making
 - Plans for the upcoming week

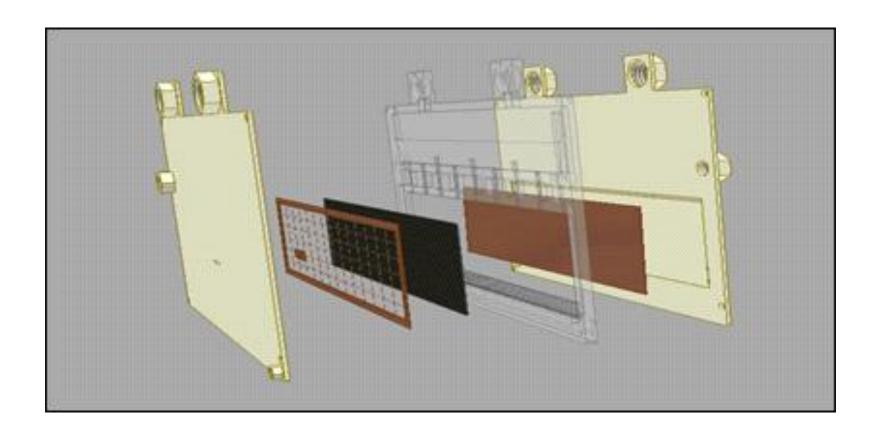
Team Organization



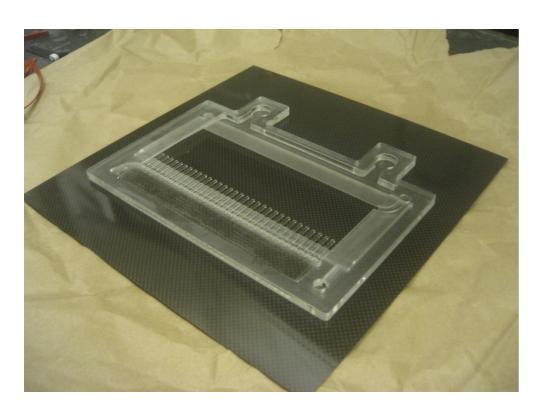


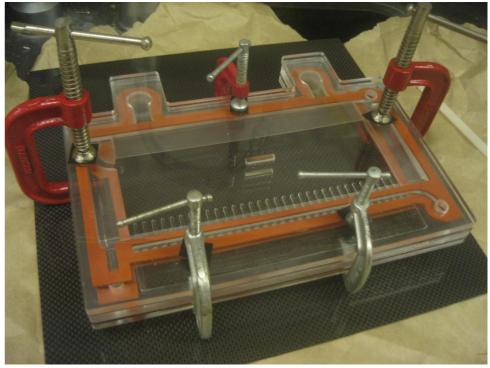

Battery Team

Analysis of the first prototype

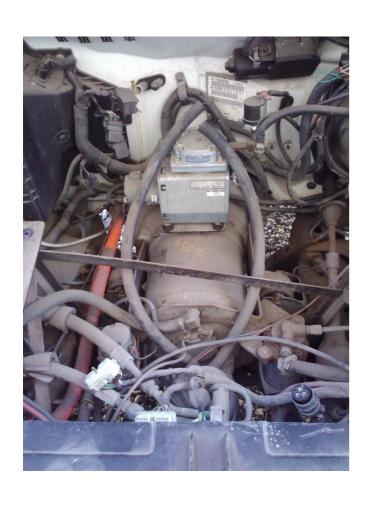


Battery Team


Design of the second prototype



Battery Team


Construction of the second prototype

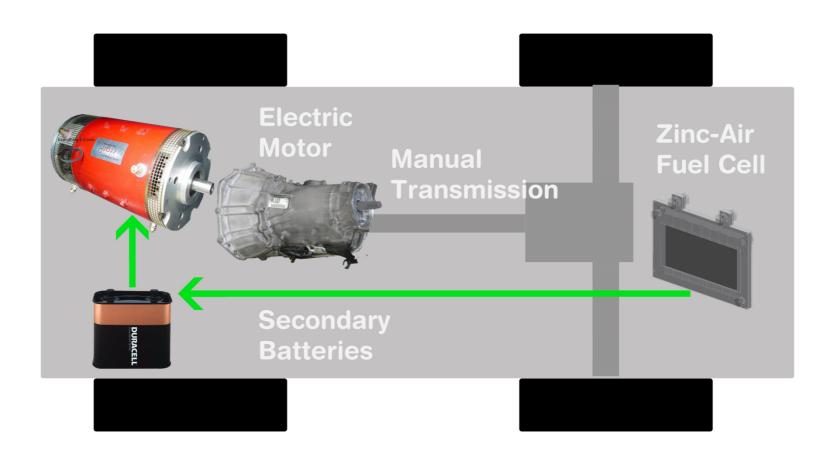
Disassembly of the truck

Reassembly of motor and transmission

Research and analysis for secondary battery

PbA- Lead acid

- Oldest and proven
- Low Energy density-:20 -35 Watt-hr/kg.
- Suited for range rather than power.
- ~2V output per cell


NiMH- Nickel Metal hydride

- Energy density of 50-60 Watt-hr/kg.
- ~1.2 V per cell.
- Technology patented by Chevron.
- Few sources, ex used Toyota Prius batteries.
- Maximum current draw is limited.

Li-ion Lithium ion

- Latest technology, in study.
- Best energy density 100-110 Watthr/Kg, hence the lightest.
- Eco-friendly.
- Ranges 3-4V per cell.
- Best option

Business Team

Created Facebook page to spark interest

 Submitted a grant proposal to the WISER Institute

Cost Analysis

Table 3.11. Cost Comparison Between a Civic, a Prius, and a ZAFC EV Using Solar Derived Electricity

Vehicle 2004 Chevrolet S- 10	MSRP \$24,660	Rebate \$0	Federal tax credit	City MPG	Hwy MPG 23.0	Avg MPG 20.0	Fuel consumption per year		Annual fuel cost	Annual maintenance cost	Cost over entire ownership	Savings over entire ownership
							435	gal	\$1,521.74	\$0.00	\$44,905.69	\$0.00
2008 Honda Civic	\$17,760	\$0	\$0	25.0	36.0	30.5	278	gal	\$972.22	\$0.00	\$31,016.63	\$13,889.06
2008 Toyota Prius	\$22,875	50	50	48.0	45.0	46.5	222	gal	\$777.78	\$0.00	\$34,871.71	\$10,033.98
ZAFC Powered S- 10	\$32,967	\$0	\$7,500	87.0	62.8	74.9	3966.7	kg	\$991.67	\$218.84	\$42,511.75	\$2,393.93
ZAFC Powered Civic	\$26,067	\$0	\$7,500	87.0	62.8	74.9	3966.7	kg	\$991.67	\$218.84	\$34,504.02	\$10,401.66

Table 3.12. Cost Comparison Between a Civic, a Prius, and a ZAFC EV Using Coal Derived Electricity

Vehicle 2004 Chevrolet S- 10	MSRP \$24,660	Rebate \$0	Federal tax credit	City MPG	Hwy MPG 23.0	Avg MPG 20.0	Fuel consumption per year		Annual fuel cost	Annual maintenance cost	Cost over entire ownership	Savings over entire ownership
							435	gal	\$1,521.74	\$0.00	\$44,905.69	\$0.00
2008 Honda Civic	\$17,760	SO	S0	25.0	36.0	30.5	278	gal	\$972.22	\$0.00	\$31,016.63	\$13,889.06
2008 Toyota Prius	\$22,875	SO	SO.	48.0	45.0	46.5	222	gal	\$777.78	\$0.00	\$34,871.71	\$10,033.98
ZAFC Powered S- 10	\$32,967	50	\$7,500	87.0	62.8	74.9	3966.7	kg	\$396.67	\$218.84	\$36,143.64	\$8,762.05
ZAFC Powered Civic	\$26,067	\$0	\$7,500	87.0	62.8	74.9	3966.7	kg	\$396.67	\$218.84	\$28,135.90	\$16,769.78

Cost Analysis

Assumptions

- Zinc shipped between stations and reprocessing plants. Assumed 25 mile distance each way
- Shipment of zinc costs \$400 for 40,000 lb based on interviews
- Cost of electricity from coal power plant 5 cents per kWh, cost of electricity from solar power plant 25 cents per kWh
- Gasoline price assumed to be \$3.50
- Interest rate for time value of money 1.5%

Challenges

- Securing the space and equipment needed to work on the truck
- Effectively building on previous semesters work without negating progress
- Learning curve of the technology
- Window of opportunity
 - Develop system before hybrid vehicles become the "norm"

Ethics

- Long term effects
 - Taking away jobs from the oil industry
 - Refinement of zinc ore releases toxins
 - Most zinc is from Canada and Alaska

Conclusions

- Need more funding to continue
- Zinc oxide and precipitation are affecting the battery performance, needs to be resolved
 - Recommend a higher flow rate of electrolyte, more concentrated solution, and second chamber in car to separate oxide from cell
- Second battery needs to be selected
 - Most expensive component, decision is crucial

Next Steps

- Continue testing and designing single cell battery
- Design and build full-scale battery to test in modified truck, solve issues with available space in the truck
- Continue seeking sponsorship and publicity, build a website to promote the project
- Devise commercialization strategy for implementation of our system

