

IPRO 312: Unmanned Aerial Systems

Kay, Vlad, Akshay, Chris, Andrew, Sebastian, Anurag, Ani, Ivo, Roger

Dr. Vural

Diverse IPRO Group

- Background
- Approach
- Team Research
- Integration
- The Future

What is a UAS?

- Unmanned Aerial System
- Remotely piloted vehicle
- Air planes, helicopters, drones etc.

Why a UAS?

- Autonomous Flights Research
- Remote Sensing
- Transport
- Search & Rescue
- Repetitive/Hazardous Tasks
- Armed Attacks

- Develop an unmanned aircraft capable of
 - Autonomous flights
 - Real Time Object Recognition

- Background
- Approach
- Team Research
- Integration
- The Future

Approach - Dividing teams

Team Structure

* Legal Team – Investigating legal implications and guidelines

- Background
- Approach
- Team Research
- Integration
- The Future

Big Picture

- Background
- Approach
- Team Research
 - Auto Pilot
 - Image Detection
 - Ground Station
- Integration
- The Future

Auto Pilot - Goals

- Learn autopilot open-source code
- Tune to aircraft dynamics
- Assemble electronics & control hardware
- Sensor integration and verification

Auto Pilot – Hardware

- Assembled Hardware
 - ATmega1280 microprocessor
 - Flash Memory
 - 3-axix gyroscope
 - Accelerometer
 - Magnetometer
 - Pressure sensor (differential & absolute)
 - Temperature sensor
 - Long range ultrasonic range finder
 - GPS receiver
 - Xbee long range radio modem(900 MHz)
- 72 MHz radio for manual control
- Testing to assure functionality

Auto Pilot- Software

- Stabilization using 3 axis gyroscope
- Autonomous landing with controlled rate of descent (Ultrasound range finder)
- Autonomous Take off using air temp, pressure sensors and GPS receivers
- Autonomous waypoint navigation & return to home using 3 axis gyroscope, accelerometer, air speed, altitude sensors, and GPS
- In-Flight route modification
- Continuous transmission telemetry info to Ground Station

- Background
- Approach
- Team Research
 - Auto Pilot
 - Image Detection
 - Ground Station
- Integration
- The Future

Image Processing - Goals

- Install software into Linux Environment
- Create positive (target) and negative (background) sample images
- Use haarcascade to develop classifier and train face detect code to detect defined targets
- Integrate with rest of system

Software

OpenCV

 Open source library of programming functions aimed at real time computer vision originally developed by Intel

- MATLAB
 - Create sample images

Creating Sample Images

- Developed an automatic method to produce several thousand positive and negative samples
 - Tried using OpenCV
 - Developed a program in MATLAB to rotate shapes and overlay those onto backgrounds

overlaidimage24

overlaidimage26

overlaidimage34

overlaidimage23

overlaidimage25

overlaidimage36 overlaidimage37

overlaidimage35

overlaidimage48

overlaidimage45

age45 overl

overlaidimage46 overla

Haarcascade

- Use created sample images to train a classifier to detect specified target
 - Issues
 - Segmentation fault
 - Parameter values
 - Pixel size
- To be done
 - Used trained classifiers in Object Detect

- Background
- Approach
- Team Research
 - Auto Pilot
 - Image Detection
 - Ground Station
- Integration
- The Future

Ground Station Functions

- Connects airframe to image processing
- Connects airframe to control software

– Update GPS waypoints

- Sends and receives information to and from airframe
 - Airspeed, Altitude, orientation
- Acts as human interface to airframe

- GUI enables human intervention and control

Ground Station - Goals

- Facilitate total system integration
- Maximize range of receivers & transmitters
- Maintain constant signal with UAS during flight
- Develop a graphical user interface for all UAS relevant information
- Keep costs down while maintaining versatility

Ground Station Components

Ground Station Progress

- Completed assembly and programming of antenna tracking system
- Purchased majority of the components
 Need to purchase the case and batteries
- Completed graphical user interface (GUI) development
- Currently testing hardware and software

- Background
- Approach
- Team Research
- Integration
- The Future

Integration

- Background
- Approach
- Team Research
- Integration
- The Future

Future Work

- Take part in AUVASI Competition
- Integration of autopilot and image processing into ground station
- Developing a pre-flight checklist and diagnostic manual
- Testing & Analysis
- Approaching sponsors

Questions?