IPRO 331 -

Non-Invasive Blood Glucose Monitoring

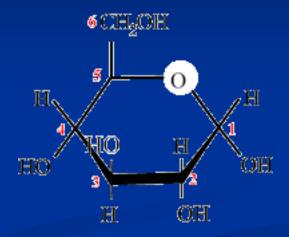
IPRO 331 - Non-Invasive Blood Glucose Monitoring

Back Row: Brogan Dexter, Daisy Rathod, Sangeeta Bookseller, Jon Young, Jude Kieltyka. Front Row: Adeseye Adekeye, Anu Topgi, Shivani Shah, Chad Nishizuka

IPRO 331 - Non-Invasive Blood Glucose Monitoring

≻ Purpose

≻Background


≻Design

≻Cost Analysis

➢Obstacles

➢Conclusion

Recommendations for Future

Diabetes Background

➤ Type 1:

- ✓ "Juvenile Onset"
- Autoimmune Disease in which immune system attacks the Pancreatic Beta cells which produce insulin
- ✓ Insulin is a hormone used by the body to metabolize glucose
- Require Regular Insulin Injections
- Must constantly monitor blood glucose to avoid both hyperglycemia and hypoglycemia.

➤ Type 2:

- "Adult Onset"
- Pancreas Still Produces Insulin, but "Insulin Resistance" prevents the body from utilizing it
- Accounts For 90-95% of all diabetes cases

Hyper and HypoGlycemia

> Hyperglycemia

- ✓ Blood glucose is above recommended range
- Blurry Vision, Excessive Thirst and possible long term effects such as blindness and even early death

> Hypoglycemia

- ✓ Blood glucose is below recommended range
- ✓ Possible Medical Emergency
- ✓ "Insulin Shock"
- ✓ Can quickly lead to coma and death

Current Methods

- Require finger pricks for blood
- The blood is then blotted onto test strips
- > Test strips are placed in a reader
- Very Cumbersome and stressful, particularly for young children

Project Purpose

Invasive Procedure Elimination
 Continuous monitoring
 Cost Reduction

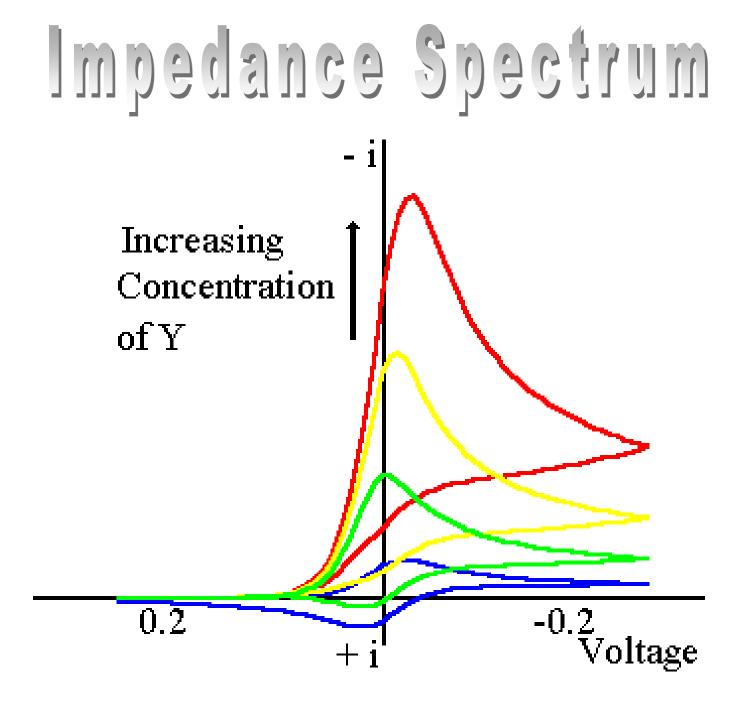
Eliminate need to restock monitoring supplies

Design Possibilities

Measurement Medium
Intersticial Fluid
Blood
Saliva
Medium Extraction
Vacuum

✓ Ultrasound

✓Iontophoresis

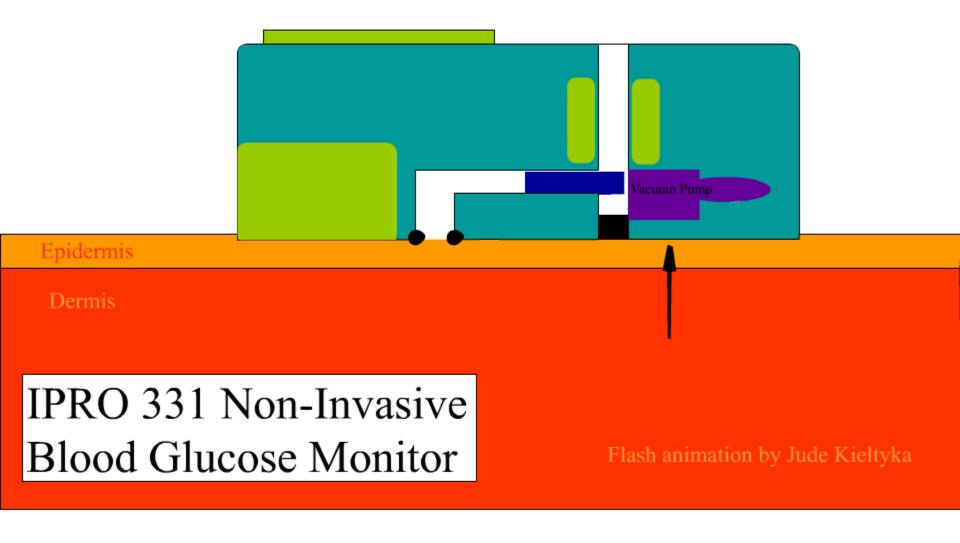

Design Possibilities

➢Measurement

➢ Infrared Spectroscopy
 ✓ Near Infrared
 ✓ Far Infrared

Photo-acoustic glucose measurement

Impedance Spectroscopy


Design possibilities

Cleaning the deviceSelf-cleansing sensors

IPRO 331 Design

► Interstitial fluid >Ultrasound permeation ► Vacuum extraction ► Impedance spectroscopy ✓ Resonates Glucose Molecule ✓ Specific Frequency isolation

The vacuum pump then begins its first phase by drawing up any sweat

Cost Analysis

Equipment Needed

- ➢ Ultrasound
 - ✓ Transducer
 - ✓ Amplifier

- Cleaning Components
 Sensors
 Titanium Oxide Film
- Vacuum Unit
 Batteries
 Vacuum Pump
- Impedance Spectroscopy
 Circuit Components
 Impedance Sensors

Cost Analysis

Current Technology

Invasive Blood Glucose Monitoring ✓ 50 Test Strips: \$ 30 (replenish every 25 days or less) ✓ 200 Lancets: \$ 10 - \$ 50 (replenish every 3 months) ✓ Testing Apparatus: \$ 50 - \$ 100 (Lower Level Monitors) ✓ Consumable Auto-Sensors (certain machines): \sim \$ 70 Replenishment of Supplies required ➢ Average Cost per Test: \$ 0.70 - \$ 0.80

Cost Analysis

Our Technology

Non-Invasive Blood Glucose Monitoring

Items	Cost Range (\$)
Ultrasound components	25-100
Vacuum device including batteries	15-20
Cleaning Components	~ 10
Impedance Materials	~ 150

- ➢ Total Cost Range: \$200 to \$280
- ➢ No replenishing of supplies. <u>One Time Purchase!</u>

Obstacles

≻Vacuum pressure

Sweat convolutions

Concentration Convolutions

Cleaning measurement chamber

>Who is on the patent?

Future Direction

Develop Working Prototype

>Obtain patent rights for the idea

►NCIAA biomedical engineering award

➢Obtain Sponsorship for further development

Acknowledgements

✓ We would like to thank Mr. Ray DeBoth for all of his help in our development of ideas and the technical assistance he provided to our team. Without him there would have been no Electrical Engineering perspective

✓ We would also like to thank Dr. Gottleib for helping us to develop a disclosure statement, the first step to obtaining a patent

✓ Finally, we would like to thank Dr. Emmanuel Opara for his guidance through the project and his help in developing our ideas into a prototype.

References

Caduff, A. et al. "First Human Experiments with a Novel Non-Invasive, Non-optical, Continuous Glucose Monitoring System." *Biosensors and Bioelectronics*. xxx. p. 1-9. 2003.

Sieg, A. et al. "Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring." *Biophysics Journal BioFAST*. Aug. 31, 2004.

www.uspto.gov http://jchemed.chem.wisc.edu/JCESoft/CCA/CCA5/MAIN/1ORGANIC/ORG18/ TRAM18/B/1003123/MOVIE.HTM http://www.engineering.ucsb.edu/Announce/mitragotri.html http://www.tracegasfac.science.ru.nl/whatis.htm http://www.physics.iitm.ac.in/~cvijayan/photoacoustic.htm http://www.aapspharmaceutica.com/search/view.asp?ID=49565 http://www.skin-forum.org.uk/abstracts/ching.php http://chipo.chem.uic.edu/web1/ocol/spec/IR.htm http://www.wpi.edu/Academics/Depts/Chemistry/Courses/CH2670/infrared.html http://www.toto.co.jp/hydro_e/index.htm http://jap.physiology.org/cgi/content/abstract/53/6/1540 http://health.howstuffworks.com/sweat.htm