IPRO 317: VTOL for the Masses

Project History

Full-Scale Design:

- -Researched materials left by past semesters' teams
- -Settled on a design close to previous X-Plane Model
- -Prototype is stripped down version of model, designed with real components and materials
- -Future: analysis of physical stresses and structure, eventually leading to assembly.

Gas Prototype Tweaking:

- -Picked up where previous team left model
- -Many mechanical problems sprang up
- -Performed complete overhaul
 - -Full tune-up of engine (weekly help of RC expert)
 - -Reworking of support structure
- -Future: completion of full flight testing

Micro-Scale Prototype:

- -Continued with design and purchasing of parts
- -Further design of new control systems
- -Assembly commenced, custom fabricated parts on order
- -Future: complete assembly, begin flight testing

Our Vertical Take-Off and Landing (VTOL) "flying car" initiative enters its second consecutive year. For the Fall 2006 semester, we branched our efforts into three sub-projects:

- 1. Design of a full-scale prototype for testing and evaluation.
- 2. Research, order parts for, and assemble the micro-scale model.
- 3. Continue testing and tweaking of the initial gas model.

Old Model (Gas): Problems

- 1) Inability to maintain desirable running condition (rpm, IC engine)
- 2) Safety issues
- 3) Structural stiffness (screws coming loose)
- 4) Weight and dimensions (generating sufficient lift)
- 5) Rare spare parts (e.g., bevel gears)

New Model (Micro): Solutions

- 1) Two electrical motors used
 - Electronic Speed Control
- 2) Smaller size; more stable
- 3) Gimbal eliminated, center-of-gravity control system used for maneuvering
- 4) Carbon fiber rotors used to reduce initial weight by 50%
- 5) Careful selection of parts from generic vendors

Full-Scale Model

Motor:

- -Minimum power: 140 hp
- -Rotary engines have characteristics that suit the VTOL--high RPM and low torque
- -Mazda RX-7 engine prime candidate (255 hp, 6,500 RPM, and 217 ft. lb. torque)
- -Prices from \$2500 to \$5000 (depending on features)

Rotors:

- -Rotors were researched and priced according to length
- -12ft rotors much more expensive than 10ft rotors
- -Several private dealers quoted prices between \$500 and \$1500 for pairs of 10 ft. rotors
- -Rear rotor unnecessary due to the counter-rotating main rotors

Body:

- -An "ultralight" body was selected for the prototype build
- -Body made from chromoly tubing (aluminum tubing is lighter, but also weaker)
- -Final weight of prototype body is significantly less than production model
- -The prototype will only carry 1 person, while the production model will carry 2 or more.

