

Design of a Simulator for Mechanical Loading of Garage Door Operator Systems over a Wide Temperature Range

IPRO 324 – Fall 2003

Our Sponsor: Chamberlain

CHAMBERLAIN[®]

World's largest manufacturer of residential garage door operator systems.

 Exclusive provider of all garage door operators for SEARS

Problem Definition

- Chamberlain guarantees their garage door operator systems to last for approximately 25,000 cycles (10 yrs.) in all weather and environmental conditions.
- Need of in-lab testing data to ensure this warranty.
- Chamberlain's current weight based system in their environmental chamber (THERMOTRON) over estimates life span of garage door operators.
- PROBLEM: Build a simulator that closely approximates real garage door operator life span taking into consideration size constraints in the THERMOTRON.

THERMOTRON

Inner Dimensions: 4' x 7' x 14'

Problem Solving Approach

DATA COLLECTION

DESIGN CONCEPTS

SIMULATOR IMPLEMENTATION

Data Collection

- Chamberlain provided load profiles of garage door operator arm.
- Opening cycle: Tension Forces predominate
- Closing cycle: Compression Forces predominate

Data Collection

- Design of our strain gauge arm to collect our own data.
- New load profiles were collected during two trips to Chamberlain.
- Initial data differed from new data obtained.

Data Collection: Our data vs. Chamberlain's

Chamberlain's Data

IPRO 324 Data

Design Concepts

Design concepts:

Pulley System

Ski Lift System

Two-Rail System

Design Concepts: Pulley System

Design Concepts: Ski Lift

Current Simulator Implementation

Our Simulator: Current Implementation

Braking system

- Interfacing Mechanical and Electrical systems to achieve accurate load profiles.
- Development of an automated, real time
 Labview program to input, collect, and view load
 profile data on the arm.
- Input vs. Output
- Pips vs. Time

Labview Data Collection and Control Program

Garage Door Operator: Our simulator

Findings of current implementation

- Current simulation provides unidirectional force in each stage of operation: tension (opening), compression (closing).
- Our prototype can still simulate maximum load in each cycle.
- We believe this causes maximum wear to the parts that frequently fail.
- Inertia on current panel is very small; this results in a lot of vibration.
- Developed powerful Labview program for semiautomated process.

Recommendations

- Run an automated test of current system to failure.
- Add weight and a spring system to the panel
 - Implementation of a motor coupled with braking system to simulate tension and compression in each stage of the cycle operation
- Implementation of a closed-loop feedback analysis.
- Further development of a computer based simulation to visualize garage door operator response to any change in the parameters
- Real-garage door or "field" data collection

Acknowledgements

- Chris Christophoros
- John Delcore
- Phillip Felber
- Rich Flaningen
- Dr. Zhiyong Hu
- Russell Janota
- Ed Laird
- Roger Lhotak
- Joseph Papp