

Plug-in Hybrid Electric Vehicle IPRO 356

Business Team

Jason Fuglestad Dolapo Popoola Sujit Thomas Seung Baek Mary Cyriac Matt Anderson Yin Zhao

Technical Team Julie Patti Jae Suk Lee Hassan Ali

Instructor: Sanjaka Wirasingha Faculty Advisor: Dr. Ali Emadi

URL: www.isopomoto.com

IPRO 356/Isopomoto

<u>Mission</u>: To analyze the business opportunities for Plug-In Hybrid Electric Vehicles (PHEV) for the Grainger Power Electronics Lab and AllCell Technologies

Team Structure

- Technical and business divisions
- Collaboration with Illinois Institute of Technology

The Problem

- **1. Oil Prices:**
 - Three fold increase in price, last five years
 - \$2.4 billion, the avg. daily cost (U.S)
 - Cost will continue to increase

- **3. Environmental Pollution:**
 - Global Climate Change
 - Ozone Depletion
 - Emissions and smog

2. Finite resources:

- Reserve estimated at 1 trillion barrels
- 27.7 billion barrels produced in 2004
- 33 billion bar/yr in 2010, expected

Our Solution

HEV -> PHEV Conversion Kits

- Advanced Technology
 - Externally charged battery
- Wide Application
 - Kit can convert any existing hybrid vehicle
- Value
 - Reduces oil consumption and emissions

HEV Market Potential

HEV Sales: 2000-2005

Introduction to the Simulation Software (ADVISOR)

Vehicle Input	Length: 174.9 in, Width: 70.1 in,			Lord Fie PARIALLEL_default_in					AutoStre				
	Wheel Base:	103,2 in,		Drivetrain Config	p	iraliei					Scale	Compone	eles
	Gross Vehicle Mass:	2240 lb,				NICO		302			andle best (6/m/)	peak eff	26.515
			17	Vehide	1				Conve_Escape				160
			17	Fuel Converter	10		2		FC_586		96	0.95	30
	. 7		17	Exhaust Alternal			2		EX.SI		Xolmod	Vinan	27
			17	Energy Storage	(int)			rinb -	ESS_Annex/ILSHEV_NMH28		65	436	23
		-108	-	Energy Storage 2			2						
_			R.	Motor					MC_PM58		58	0.92	70
	- 1			Hotos 2									
Horsepo	Engine type: 2.3L 4V Alkin wer(hpt#rpm): 133	son cycle Engine		Stater			7						
Torque	(lb,-ft.@rpm): 124	0.4250	-	Generator				-					
Moto	Permanent Magnet AC syn	chronous motor	-	Transmission	(mAt)		7	H-R0 .	TRAUTON			1	
Component Power (rpm)) 94 hp (70kW)@50	000 rpm		Transmission 2									
fuel_convertor	fo_efficiency			Chatch/Tors, Core.			7						
	Low Battery SOC	70% 30%	21	Torque Coupling					TC_DUMMY			1	
160	Linctric Linunch Low Spred	25mph	21	Wheel/Role	(Cr		2		WH_SUV				-0
160			17	Accessory	Const		2	Conit .	ACC, HYBRID				
140		¥з -		Aze Decisical									
2120		/ 1	17	Powertrain Control	GW (1)		2	640	PTC_FUZZY_EFF_MODE				
£ 100-		1									Cargo	Mass [136
100 -	~ /										Calculated Ma		2483
60	p.zs			View Block Diagram	•		BD	PAR_AUT	D	- Incoment		-	and the second
20- p.15	p2	<u>P15</u>	-	2002/2012								-	_
0			Vari	sblo List						Save		Heit	¢.
0 1000 2	2000 3000 4000 50 Second (mm)	00 6000	Cor	covers fuel_conve	Her.	_	- 2		Eck Val		_		_

ISOPOMOT

Developed by the National Renewable Energy Laboratory
Predicts the performance of a vehicle

ILLINOIS II

- Flexibility in design:
 - Choose an engine type
 - Determine an optimal electric motor and a battery
 - Decide a control strategy
 - Select drive cycle and number of cycles

Plug-in Hybrid Escape Simulation Results

Fuel Economy (city) – Twice as efficient

Emissions - Cut emissions in half

ILLINOIS INST

Component/Cost Analysis

Component	Description	Cost per kit
Battery (Li-ion)	245V, 24Ah, 6kWh	10,000
Power Electronics System	AC Input Voltage	500
(AC/DC Converter)	85 – 264 V AC	
	DC Output Voltage	
	2 – 48 V DC	and the second second
Power Electronics System	DC Input Voltage	300
(DC/DC Converter)	12 V DC	
	DC Output Voltage	
	350 V DC	
Assembly Labor	\$25/hr	500
	20hrs per kit	
Insulation / Packaging	Jab The	500
Miscellaneous Components	P. 1100	200
Total		12,000
CANALLATA	And the second se	

ISOPOMOTO - SWOT Analysis

Strengths

- Technical Knowledge
- Productive and committed team

Opportunities

- High gasoline prices
- Increased environment awareness

Weaknesses

ISOPOMOTO

- Insufficient capital
- Lack of established customer base

Threats

Alternative fuels

Major Industry Trends

- The gradual decline of the big 3 (General Motors, Ford, DaimlerChrysler)
- Alternative fuels gain popularity

ISOPOMO'

- Fuel efficiency becomes key selling element (CAFE standards)
 - 27.5 MPG for passenger cars
 - 20.7 MPG for light trucks

Source: Plunkett Research Ltd.

Fuel Efficiency becomes key selling element

Survey Results

□ Fuel efficiency

 Maintenance, Repair, Quality, Reliability
 Safety

Luxury, Features, Comfort, Smooth ride

Cost, Resale value, Warranty, Economy

 Fast, Speed, Engine, Power, Performance
 Look, Style, Aesthetic, Design

- Ethanol
- Diesel
- Hydrogen Fuel cells

- Bio-diesel
- Electricity fully electric

ILLINOIS INSTITU

OF TECHNOLOGY

 Natural Gas (compressed and liquid)

ISOPOMOTO – Political, Economic, Social and Technological Analysis

FACTOR	IMPACT ON ISOPOMOTO
Political1. Federal safety regulations (high voltage)2. Current tax reduction is \$2,000	Might delay acceptance Will encourage sales
Economic:	
Illinois is transitioning to a competitive market structure for electricity beginning Jan 1, 2007	Less economic appeal
Social:	
Trends (Health, Environment etc)	Will encourage sales
Technological:	
Development of alternative fuels	May reduce sales

Primary Competitors

Company	Background	Target Clients	Partnerships
EnergyCS (www.energycs.com)	 First to introduce PHEV commercially 2007 target for direct consumer sales 	 Toyota Ford Honda Lexus 	 • UK company Amberjac Projects Ltd • Calcars • Valence Technology
Hymotion (www.hymotion.com)	 Introduced for fleet use 2006 direct consumer sales Target price for kit is \$9,500 	 Toyota Ford Saturn Mariner 	• None

Comparison to Primary Competitors

Company	Price(\$)	Fuel Efficiency (city mpg)	Emission Efficiency (g/mile)	Battery type	Battery size (kWh)	
Isopomoto	12,000	124.3 (Toyota Prius)	Zero Emission (City drive	lithium-ion with	6kWh	
	Goal price: 10,000	76.3 (Ford Escape)	cycle 2.97)	manageme nt		
EnergyCS	Goal price : 12,000	112 (Toyota Prius)	Zero Emission	lithium-ion	9kWh	
HyMotion	12,500	100 (Toyota Prius)	Zero Emission	lithium-ion	L5 : 5kWh L12 : 12kWh	
	Goal Price: 9,500	60 (Ford Escape)				
(emission efficiency is based on the city driving in 28mile/h)						

Comparison to Primary Competitors

Comparison of Fuel Economy to Cost

Customer Analysis

Three Main Types of Customers have been identified

- 1. Direct Consumer
- 2. Fleets
- 3. Indirect Customer

i. Partnership with a global auto company

ii. Licensing to major auto manufacturers

Case Study: Chicago Transit Authority (CTA)

Second largest public transportation system in the U.S.

Over 1.6 million customers and 205 000 miles every weekday

Increase in fuel price generated \$9.1 mil. additional operating cost

ISOPOMOTO

The Fleet in 2005Number of buses2033Distance covered74.8 miFuel consumption24 milliCost of fuel43 milli

2033 74.8 million miles 24 million gallons 43 million dollars

CTA: Cost Analysis / bus Fuel saving in 2007 will be \$17,127 per bus

	2007 –	2007-	2007 -			
	conventional	hybrid	plug-i	n hybrid		
Mileage	37,000 mi	37,000 mi	37,00)0 miles		
			(22,400 gas +	14,600 electric)		
Fuel efficiency	3.13 mpg	4.9 mpg	4.9 mpg	4miles / kwh		
Fuel consumption	11,805 gal	7,551 gal	4571.4 gal	3650 kwh		
Cost of fuel	\$2.41/gal	\$2.41/gal	\$2.41/gal	\$0.0838 / kwh		
Tot_fuel cost	\$28,450	\$18,198	\$1	1,323		
			(\$11,017 gas	+ \$305 electric)		
			5			
\$10,252 saving \$6,895 saving						
SOPOMOTO						

Cost Analysis

Start up costs

- Research and development costs
- Initial training of staff
- Facility and property costs
- Office equipment and furniture
- Legal fees

O&M Costs

- Wages and Benefits
- Parts and Shipping for kits
- Advertising
- Utilities
- Office Maintenance

Potential sources of cash include:

- Sales
- Fundraising and grants
- Investors
- Customers

Staffing

- Assembly and installation
 - Troubleshooting
 - Quality Control
- Executive Staff

 Marketing Team
- Support Staff
 - Advisors

ISOPOMOTO

– HR Manager

The future of EnPRO 356/Isopomoto

- Complete the cost analysis
- Recyclable parts
- More robust power electronics
- More options for the end-user
 - Same day installations
 - Vehicle Delivery
 - Rental Arrangements
- Vehicle-to-grid integration (V2G)

Acknowledgements

- Sanjaka Wirasingha
- Dr Ali Emadi

SOPOMO

- Professor Bob Anderson
- Professor Jim Braband
- Chris Schneider, Honda Motorwerks

Questions

www.isopomoto.com